首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of aluminum and yttrium nitrate additives on the densification of monolithic Si3N4 and a Si3N4/SiC composite by pressureless sintering was compared with that of oxide additives. The surfaces of Si3N4 particles milled with aluminum and yttrium nitrates, which were added as methanol solutions, were coated with a different layer containing Al and Y from that of Si3N4 particles milled with oxide additives. Monolithic Si3N4 could be sintered to 94% of theoretical density (TD) at 1500°C with nitrate additives. The sintering temperature was about 100°C lower than the case with oxide additives. After pressureless sintering at 1750°C for 2 h in N2, the bulk density of a Si3N4/20 wt% SiC composite reached 95% TD with nitrate additives.  相似文献   

2.
The microstructures and pyroelectric properties of multicomposition 0.9PbZrO3· x PbTiO3·(0.1− x )Pb(Zn1/3Nb2/3)O3 (PZ–PT–PZN) ceramics were investigated. The PZ–PT–PZN ceramics with nearly theoretical density were prepared by spark plasma sintering at low temperature (800°C) for a very short time (10 min) from two original compositions with x = 0.025 and x = 0.050. The heat treatment was successfully used to control the diffusion between the different compositions in such ceramics. For ceramics heat-treated at 900°C, two pyroelectric peaks corresponding to the original compositions were observed. When the heat-treatment temperature was increased to 1200°C, these two pyroelectric peaks combined into one sharp pyroelectric peak, which corresponds to average composition. When the spark-plasma-sintered ceramics were heat-treated at 950°C, a high and stable pyroelectric coefficient (>100 nC·cm−2·K−1) over a wide temperature range (23°–47°C) was obtained. It was found that the pyroelectric properties strongly depended on the microstructures.  相似文献   

3.
Twenty hours of mechanical activation of mixed oxides at room temperature led to the formation of Pb(Mg1/3Nb2/3)O3 (PMN) in excess PbO. The crystallinity of the activation-derived perovskite PMN phase was further established when the activated PMN–PbO phase mixture was subjected to calcination at 800°C. Pyrochlores, such as Pb3Nb4O13 and Pb2Nb2O7, were not observed as transitional phases on mechanical activation and subsequent calcination, although 50% excess PbO was deliberately added. The perovskite PMN phase was recovered by washing off excess PbO using acetic acid solution at room temperature. It was sintered to a relative density of 98.9% of theoretical at 1200°C for 1 h and the sintered PMN exhibited a dielectric constant of ∼14 000 at 100 Hz and a Curie temperature of −11°C.  相似文献   

4.
Dense BaTiO3 ceramics consisting of submicrometer grains were prepared using the spark plasma sintering (SPS) method. Hydrothermally prepared BaTiO3 (0.1 and 0.5 µm) was used as starting powders. The powders were densified to more than similar/congruent95% of the theoretical X-ray density by the SPS process. The average grain size of the SPS pellets was less than similar/congruent1 µm, even by sintering at 1000-1200°C, because of the short sintering period (5 min). Cubic-phase BaTiO3 coexisted with tetragonal BaTiO3 at room temperature in the SPS pellets, even when well-defined tetragonal-phase BaTiO3 powder was sintered at 1100° and 1200°C and annealed at 1000°C, signifying that the SPS process is effective for stabilizing metastable cubic phase. The measured permittivity was similar/congruent7000 at 1 kHz at room temperature for samples sintered at 1100°C and showed almost no dependence on frequency within similar/congruent100-106 Hz; the permittivity at 1 MHz was 95% of that at 1 kHz.  相似文献   

5.
NiAl/10-mol%-ZrO2(3Y) composites of almost full density have been fabricated via spark plasma sintering (SPS) for 10 min at 1300°C and 30 MPa. The former intermetallic compound, which contains a trace amount of Al2O3, has been prepared via self-propagating high-temperature synthesis. The composite microstructures are such that tetragonal ZrO2 (∼0.2 μm) and Al2O3 (∼0.5 μm) particles are located at the grain boundaries of the NiAl (∼46 μm) matrix. Improved mechanical properties are obtained: the fracture toughness and bending strength are 8.8 MPa·m1/2 and 1045 MPa, respectively, and high strength (>800 MPa) can be retained up to 800°C.  相似文献   

6.
Low-temperature-sinterable (Zr0.8Sn0.2)TiO4 powders were prepared using 3 mol% Zn(NO3)2 additive and then compared with powders prepared using 3 mol% ZnO additive and no additives. Sintering at 1200°C for 2 h produced a dielectric ceramic with ρ= 98.6% of theoretical density (TD), ɛr= 38.4, Q × f (GHz) = 42000, and τ f =−1 ppm/°C. Sintering at 1250°C resulted in an excellent dielectric with ρ= 99% of TD, epsilonr= 40.9, Q × f (GHz) = 49000, and τ f =−2 ppm/°C. Scanning electron microscopy showed a microstructure with grains measuring 0.5 to 1 μm, and transmission electron microscopy revealed secondary phase in the grain boundaries.  相似文献   

7.
A coating approach for synthesizing 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 (0.9PMN–0.1PT) and PMN using a single calcination step was demonstrated. The pyrochlore phase was prevented by coating Mg(OH)2 on Nb2O5 particles. Coating of Mg(OH)2 on Nb2O5 was done by precipitating Mg(OH)2 in an aqueous Nb2O5 suspension at pH 10. The coating was confirmed using optical micrographs and zeta-potential measurements. A single calcination treatment of the Mg(OH)2-coated Nb2O5 particles mixed with appropriate amounts of PbO and PbTiO3 powders at 900°C for 2 h produced pyrochlore-free perovskite 0.9PMN–0.1PT and PMN powders. The elimination of the pyrochlore phase was attributed to the separation of PbO and Nb2O5 by the Mg(OH)2 coating. The Mg(OH)2 coating on the Nb2O5 improved the mixing of Mg(OH)2 and Nb2O5 and decreased the temperature for complete columbite conversion to ∼850°C. The pyrochlore-free perovskite 0.9PMN–0.1PT powders were sintered to 97% density at 1150°C. The sintered 0.9PMN–0.1PT ceramics exhibited a dielectric constant maximum of ∼24 660 at 45°C at a frequency of 1 kHz.  相似文献   

8.
Sintering temperature has a pronounced effect on perovskite phase stability at the surface of Pb0.88Sr0.12Zr0.54Ti0.44Sb0.02O3 (PSZT) soft piezoelectric ceramics ( d 33≈ 600 pC/N). After sintering 4 h at 1070°C, XRD reveals only perovskite PSZT peaks in the bulk and at the surface. As sintering temperature increases, XRD from the ceramic surface reveals a second-phase peak at ∼27° (2θ), 0.316 nm ( d -spacing). After 4 h at 1280°C, further second-phase peaks are observed, confirming it to be monoclinic ZrO2, accompanied by a strong increase in the degree of tetragonality of the perovskite phase. These observations are consistent with decomposition of the PSZT to ZrO2 and tetragonal PZT (PbZrO3–PbTiO3) associated with PbO loss. SEM and cross-sectional TEM indicated that surface decomposition had progressed ∼0.5 mm into the sample after 4 h at 1280°C.  相似文献   

9.
A solution sol-gel method has been developed to prepare 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN-0.1PT) ceramics. During the processing the gel first converted to cubic pyrochlore phase at a calcination temperature of 600°C followed by the formation of pure perovskite phase at 775°C. The ceramics sintered at 1250°C for 4 h showed ≈98% of the theoretical density. The room-temperature dielectric constant of the pellets sintered at 1250°C showed a maximum value of 25035 at 1 kHz. Sintering studies at different temperatures revealed that the dielectric constant increased with increasing grain size in these ceramics.  相似文献   

10.
Solid electrolytes, LiTi2(PO4)3 (LTP), Li1.3Al0.3Ti1.7(PO4)3 (LATP), and Li1.3Al0.3Ti1.7(PO4)2.9(VO4)0.1 (LATPV), were prepared by conventional sintering (CS) and spark plasma sintering (SPS) methods, and the Li+ ion conductivity of the sintered pellets was examined using an impedance analyzer. SPS remarkably improved the densification compared to CS and resulted in dense ceramics (95–97% of theoretical density) irrespective of the substituted ions. The highest conductivity of 2.6 × 10−4 S/cm was found for the LATPV specimen sintered by spark plasma at 1100°C. LATP and LATPV exhibited an order of magnitude higher ionic conductivity than LTP in the specimens of similar densities. The results demonstrated that the enhanced conductivity in substituted LTP is not due to the enhanced densification alone. The other possible explanations are discussed in terms of bottleneck size, lithium content, and grain boundary characteristics.  相似文献   

11.
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°–1600°C for 3–12 min, using α-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%α-Si3N4 phase left in the sintered material. α-Si3N4 was completely transformed to β-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K)−1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate β-Si3N4 ceramics with high thermal conductivity when appropriate additives are used.  相似文献   

12.
The precursor powders of Ca3Co4O9 were synthesized by a sol–gel method. The results of X-ray diffraction and thermogravimetric and differential thermal analyses patterns indicate that pure Ca3Co4O9 powders could be obtained by calcining the precursor at 800°C for 2 h. High dense Ca3Co4O9 ceramic samples (∼99% of theoretical density) were prepared by the spark plasma sintering (SPS) method. Compared with the conventional sintering (CS), the SPS samples exhibit much higher electrical conductivity and power factor which are respectively about 118 S/cm and 3.51 × 10−4 W·(m·K2)−1. The SPS method is greatly effective for improving the thermoelectric properties of Ca3Co4O9 oxide ceramics.  相似文献   

13.
Nano-sized TiO2 powders were prepared by controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 solutions and nitrided in flowing NH3 gas at 700°–1000°C to form TiN. Nano-sized TiN was densified by spark plasma sintering at 1300°–1600°C to produce TiN ceramics with a relative density of 98% at 1600°C. The microstructure of the etched ceramic surface was observed by SEM, which revealed the formation of uniformly sized 1–2 μm grains in the TiCl4-derived product and 10–20 μm in the Ti(O-i-C3H7)4-derived TiN. The electric resisitivity and Vickers micro-hardness of the TiN ceramics was also measured.  相似文献   

14.
Si3N4 compacts, containing ≅7 wt% of both BeSiN2 and SiO2 as densification aids, can be reproducibly sintered to relative densities >99% by a gas-pressure sintering process. Nearly all densification takes place via liquid-phase sintering of transformed β-Si3N4 grains at T =1800° to 2000°C. Compacts with high density are produced by first sintering to the closed-pore stage (≅92% relative density) in 2.1 MPa (20 atm) of N2 pressure at 2000°C and then increasing the N2 pressure to 7.1 MPa (70 atm) where rapid densification proceeds at T = 1800° to 2000°C. The experimental density results are interpreted in terms of theoretical arguments concerning the growth (coalescence) of gas-filled pores and gas solubility effects. Complex chemical reactions apparently occur at high temperatures and are probably responsible for incomplete understanding of some of the experimental data.  相似文献   

15.
Perovskite Pb(Fe2/3W1/3)O3 (PFW) was prepared via a mechanical activation-assisted synthesis route from mixed oxides of PbO, Fe2O3, and WO3. The mechanically activated oxide mixture, which exhibited a specific area of >10 m2/g, underwent phase conversion from nanocrystalline lead tungstate (PbWO4) and pyrochlore (Pb2FeWO6.5) phases on sintering to yield perovskite PFW, although the formation of perovskite phase was not triggered by mechanical activation. When heated to 700°C, >98% perovskite phase was formed in the mechanically activated oxide mixture. The perovskite phase was sintered to a density of ∼99% of theoretical density at 870°C for 2 h. The sintered PFW exhibited a dielectric constant of 9800 at 10 kHz, which was ∼30% higher than that of the PFW derived from the oxide mixture that was not subjected to mechanical activation.  相似文献   

16.
Intermetallic CoAl powder has been prepared via self-propagating high-temperature synthesis (SHS). Dense CoAl materials (99.6% of theoretical) with the combined additions of ZrO2(3Y) and Al2O3 have been fabricated via spark plasma sintering (SPS) for 10 min at 1300°C and 30 MPa. The microstructures are such that tetragonal ZrO2 (0.3 μm) and Al2O3 (0.5 μm) particles are located at the grain boundaries of the CoAl (8.5 μm) matrix. Improved mechanical properties are obtained; especially the fracture toughness and the bending strength of the materials with ZrO2(3Y)/Al2O3= 16/4 mol% are 3.87 MPa·m1/2 and 1080 MPa, respectively, and high strength (>600 MPa) can be retained up to 1000°C.  相似文献   

17.
Lead-free piezoelectric ceramics have received attention because of increasing interest in environmental protection. Niobate ceramics such as NaNbO3 and KNbO3 have been studied as promising Pb-free piezoelectric ceramics, but their sintering densification is fairly difficult. In the present study, highly dense Na0.5K0.5NbO3 ceramics were prepared using spark plasma sintering (SPS). Although the SPS temperature was as low as 920°C, the density of the Na0.5K0.5NbO3 solid solution ceramics was raised to 4.47 g/cm3 (>99% of the theoretical density). After post-annealing in air, reasonably good ferroelectric and piezoelectric properties were obtained in the Na0.5K0.5NbO3 ceramics with submicron grains. The crystal phase of the Na0.5K0.5NbO3 has an orthorhombic structure. The Curie temperature is 395°C and the piezoelectric parameter ( d 33) of the Na0.5K0.5NbO3 ceramics reached 148 pC/N.  相似文献   

18.
This paper deals with the densification and phase transformation during pressureless sintering of Si3N4 with LiYO2 as the sintering additive. The dilatometric shrinkage data show that the first Li2O- rich liquid forms as low as 1250°C, resulting in a significant reduction of sintering temperature. On sintering at 1500°C the bulk density increases to more than 90% of the theoretical density with only minor phase transformation from α-Si3N4 to β-Si3N4 taking place. At 1600°C the secondary phase has been completely converted into a glassy phase and total conversion of α-Si3N4 to β-Si3N4 takes place. The grain growth is anisotropic, leading to a microstructure which has potential for enhanced fracture toughness. Li2O evaporates during sintering. Thus, the liquid phase is transient and the final material might have promising mechanical properties as well as promising high-temperature properties despite the low sintering temperature. The results show that the Li2O−Y2O3 system can provide very effective low-temperature sintering additives for silicon nitride.  相似文献   

19.
Lead-based piezoelectric ceramics typically require sintering temperatures higher than 1000°C at which significant lead loss can occur. Here, we report a double precursor solution coating (PSC) method for fabricating low-temperature sinterable polycrystalline [Pb(Mg1/3Nb2/3)O3]0.63-[PbTiO3]0.37 (PMN–PT) ceramics. In this method, submicrometer crystalline PMN powder was first obtained by dispersing Mg(OH)2-coated Nb2O5 particles in a lead acetate/ethylene glycol solution (first PSC), followed by calcination at 800°C. The crystalline PMN powder was subsequently suspended in a PT precursor solution containing lead acetate and titanium isopropoxide in ethylene glycol to form the PMN–PT precursor powder (second PSC) that could be sintered at a temperature as low as 900°C. The resultant d 33 for samples sintered at 900°, 1000°, and 1100°C for 2 h were 600, 620, and 700 pm/V, respectively, comparable with the known value. We attributed the low sintering temperature to the reactive sintering nature of the present PMN–PT precursor powder. The reaction between the nanosize PT and the submicrometer-size PMN occurred roughly in the same temperature range as the densification, 850°–900°C, thereby significantly accelerating the sintering process. The present PSC technique is very general and should be readily applicable to other multicomponent systems.  相似文献   

20.
The sol–gel method has been developed for the preparation of pure Ba(Mg1/3Ta2/3)O3 ceramics. This involves the reaction of the heterometallic alkoxide Ta2Mg(OEt)12 with hydrated barium hydroxide Ba(OH)2·8H2O. Complete crystallization of the sol–gel-derived powder is achieved at 600°C, leading to a cubic perovskite type phase. After sintering at 1400°C (2–5 h), a trigonal cell arises from Mg–Ta ordering (the degree of order is greater than 0.9), and about 98.5% of the theoretical density is obtained. Preliminary microwave dielectric measurements show that the dielectric constant and the unloaded Q u of the ceramics are 24.2 and 6750, respectively, at 7.7 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号