首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
NiCr/(Cr3C2-BaF2·CaF2) coating was fabricated by atmospheric plasma spray technology using clad powder. The coating shows low porosity, high microhardness and bonding strength, and it also exhibits good friction reduction and wear resistance at elevated temperatures up to 800 °C which is due to the formation of a kind of continuous BaF2·CaF2 eutectic lubricating film. The excellent mechanical and tribological properties of the coating are partially attributed to the protection of NiCr layer of the composite powders which can decrease oxidation, decarburization of Cr3C2, and ablation of BaF2·CaF2 eutectic during spray and deposition process.  相似文献   

2.
Metal Science and Heat Treatment - A method for assessing the effect of the temperature of friction stir welding on the microstructure and mechanical properties of welded joints of aluminum alloy...  相似文献   

3.
Ti–6Al–4V rods were butt-welded by rotary friction welding in this study. Additionally, the radial differences in microstructure and mechanical property of joints were investigated by hierarchy slicing method. The results displayed that the width of weld zone and heat-affected zone of joints became wider along radial direction. Meanwhile, the tensile strength of joints decreased gradually along the radial direction. According to the theoretical analysis, the temperature gradient and inhomogeneous forging pressure leaded to the radial differences. Through K-type thermocouples, the actual temperatures at different locations were measured, and the results were consistent with the theoretical analysis. Theoretically, the radial differences of rotary friction welding joint are an inherent phenomenon; thus, the size of weldment should be limited strictly below the corresponding critical size. In order to prevent radial differences from enlarging, the welding surface profile of weldment can be processed into oval shape, and a larger forging pressure can be used within the scope of the joint deformation allowed according to causes for radial differences.  相似文献   

4.
The oxidation of iron has been studied at low temperatures (between 260 and 500 °C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 °C allowed to propose a growth mechanism of the scale.  相似文献   

5.
Four ternary Cu–Zn–Al alloys containing 5 or 10 at.% Zn and 2 or 4 at.% Al plus an alloy containing 2 at.% Al and 15 at.% Zn have been oxidized at 800 °C in 1 atm O2, and their behavior has been compared with that of the corresponding binary Cu–Zn and Cu–Al alloys. For the alloy containing 4 at.% Al, which is already able to form external alumina scales, the addition of Zn is only effective in reducing the mass gain during the fast, initial-oxidation stage. Conversely, the addition of 15 at.% Zn to Cu–2Al is able to prevent the formation of external scales containing mixtures of the Cu and Al oxides, resulting in the formation of external alumina scales after an initial stage of faster rate, producing a limited third-element effect. Finally, the addition of Al to both Cu–5Zn and Cu–10Zn is able to prevent the internal oxidation of Zn, producing a kind of reversed third-element effect. Possible mechanisms for these effects are examined on the basis of general treatments concerning the scaling behavior of ternary alloys.  相似文献   

6.
7.
The Cu-Fe-O-S system is the key system for the characterisation of the phase chemistry in high-temperature copper making processes. An experimental study was undertaken to investigate the gas/matte/spinel equilibria in the Cu-Fe-O-S system at 1473 K (1200 °C), P(SO2) = 0.25 atm, and a range of oxygen partial pressures. The experimental methodology involved high temperature equilibration using a primary phase substrate technique in controlled gas atmospheres (CO/CO2/SO2/Ar), rapid quenching of the equilibrated phases, followed by direct measurement of phase compositions using electron probe x-ray microanalysis. Particular attention was given to the analysis of reactions during equilibration and confirmation of the achievement of equilibrium in the present study. The new data provide important information for understanding of the gas/matte/spinel interactions at high temperature and provide an essential foundation for the development of the multicomponent thermodynamic database for copper-containing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号