首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines frictional heating and the associated temperature rise for a sliding circular contact using an in situ thermal micro-tribometer. Observation of the contact temperature used a radiometric approach to measure local temperature at the sliding interface with an emphasis on full field imaging and thermal accuracy. Filled natural rubber samples were slid against optically smooth CaF2 counter-samples. Temperature rise was measured for externally applied normal forces ranging from∼100 to 1000 mN and sliding velocities ranging from∼250 to 1000 mm/s, producing temperature rises between ∼3 and 26 °C. Measured temperature rise was compared to the analytical models of Jaeger, Archard, and Tian and Kennedy for the average temperature rise in sliding contacts.  相似文献   

2.
The frictional properties of a thin hexadecane film confined between two atomically smooth surfaces of mica were studied using the surface forces apparatus equipped with a 3D actuator–sensor attachment specially designed to investigate static and dynamic forces in three orthogonal directions simultaneously. The use of this attachment allows the relative alignment of the reciprocal sliding motion to be changed by an angle of 90° while maintaining the film under the same confinement conditions. The effects of the commensurability of the confining mica surfaces as well as the relative sliding direction on the frictional behavior of the hexadecane film were determined for different temperatures (18–29 °C) and sliding velocities (4 nm/s to 4 μm/s). The confined hexadecane film exhibited smooth sliding friction whose amplitude increased with the commensuration of the surfaces. A progressive evolution in the kinetic friction force toward a steady-state value was observed over reciprocal sliding motion for given experimental conditions of applied load, sliding velocity and environmental temperature. This friction evolution shows to be dependent on the sliding history of the film and could result from a partial molecular ordering, occurring during shear.  相似文献   

3.
Frictional heating of articulating surfaces may influence the rate of wear, fatigue, creep and oxidative degradation of bearing materials. Also temperature rise can damage the surrounding tissue and lubricant around the artificial joint and contributes insert loosening. The objective of this study is to determine temperature rise between sliding surface of vitamin E blended UHMWPE and conventional UHMWPE acetabular component paired with a cobalt–chromium–molybdenum (CoCrMo) femoral component, as a function of sliding time and applied load. Besides the experimental studies, the frictional temperature rise of conventional UHMWPE was theoretically calculated. Frictional measurements of the joints were carried out on a custom made hip joint friction simulator. The diameter of the prostheses was 28 mm. Applied static loads were changed from 200 N to 1500 N. In flexion–extension plane, a simple harmonic oscillatory motion between ±24° was applied to the UHMWPE acetabular component. The period of motion was 1 Hz and the tests were run up to 11,000 cycles. Temperature rise in acetabular and femoral component was recorded with embedded thermocouples. Both the experimental temperature rise values and theoretical calculations results were compared and evaluated.  相似文献   

4.
The effects of temperature and sliding distance on the metal-to-metal wear behavior of austenitic Fe-20Cr-1.7C-1Si hardfacing alloy were investigated in air in the temperature range from 25 to 450 °C. The applied contact stress was 55 MPa and the maximum sliding distance was 18 m. In the temperature range from 25 to 200 °C, the weight loss increased linearly with increasing sliding distance. The weight loss increased parabolically with increasing sliding distance up to 18 m at 300 °C, but at 450 °C, the weight loss drastically increased from the beginning of the wear test and became almost saturated above a sliding distance of 3.6 m. The initial friction coefficient was not changed with temperature up to 300 °C. However, at 450 °C, the initial friction coefficient increased abruptly. It was thought to be due to the increasing tendency of adhesive bonding to occur between the two self-mating specimens. At temperatures below 200 °C, the steady state friction coefficient did not change significantly. Above 300 °C, the steady state friction coefficient decreased due to the oxide layers that formed on the worn surfaces during wear.  相似文献   

5.
Abstract

In the present study, the wear behaviour of cross ply (0/90°) C–C composite with 60 vol.-% fibres has been studied with sliding distance, applied load and sliding velocities. The measurement of specimen temperature has been carried out to study the effect of frictional heating. Furthermore, wear debris and wear track observations are correlated to understand the wear mechanism. The bulk wear increases linearly with distance after an initial running-in period. The temperature studies reveal that frictional heating is more with increase in load or sliding velocity under dry conditions, however, presence of lubrication reduces frictional heating, because exposure of surface for direct contact is reduced, and hence wear rate in all studies with lubrication is less than that under dry condition. The wear track studies show graphite powder, peeling of fibres and dislodging of the surface. At low loads, smearing of graphite powder keeps the wear rate low, but as the load increases; dislodging, delamination of surface and breaking of fibres dominate, and wear rate sharply increases, however, sliding velocity initially enhances the graphite formation reducing the wear, but as the velocity reached an optimum value, there is extensive breakage of fibres, dislodging and delamination of surface, and the wear rate increases sharply.  相似文献   

6.
利用ANSYS有限元软件分析了磨粒与被磨损材料表面滑动接触过程中,在摩擦热和力场的耦合作用下,接触区表现出的局部温度变化、应力变化等特性。结果表明,在磨粒滑移过程中,磨粒相当于接受固定热源作用,接触区温度逐渐上升,温度存在起伏波动现象,瞬现温升最高点在磨粒接触区两侧,反映出接触状态的不连续性,接触区状态的非稳定性;被磨材料表面的各点在进入接触前、经历接触时、脱离接触时,接触区温度存在先升高再下降的变化过程,同时,接触区的应力、剪应力、接触压力也发生变化。磨粒滑动过程的热效应问题研究将有助于揭示接触过程中材料表面损伤机制。  相似文献   

7.
In this study, we investigated the effect of temperature on the friction and wear of rice bran (RB) ceramics, a hard porous carbon material made from rice bran, sliding against alumina, stainless steel, and bearing steel balls under dry conditions. Friction tests were performed using a ball-on-disk-type friction tester wherein a ceramic heater was installed in the rotational stage. The surface temperature of the RB ceramic disk specimens was controlled at 20, 100, 150, or 200°C. The normal load was 1.96 N, sliding velocity was 0.1 m/s, and number of cycles was 20,000. The effect of surface temperature on the friction and wear of RB ceramics substantially differed among the ball material types. The friction coefficient for the RB ceramics sliding against an alumina ball decreased with increasing temperature and exhibited an extremely low value (0.045) at 200°C. The friction coefficient in the case of the RB ceramics sliding against a stainless steel ball exhibited a stable value as the temperature was increased to 150°C and slightly decreased as the temperature was increased further, reaching a low value of 0.122 at 200°C. The friction coefficient for the RB ceramics sliding against bearing steel ball drastically increased with increasing temperature, reaching 0.381 at 200°C. The specific wear rate of the RB ceramics increased with increasing temperature; it was lowest when sliding against alumina and highest when sliding against bearing steel. The wear of the alumina ball was the lowest and that of the bearing steel ball was the highest under all investigated temperature conditions. On the basis of these results, we concluded that alumina is a promising counterpart material for RB ceramics sliding at high temperatures (≤200°C).  相似文献   

8.
In this present work, the in situ Al (A380)/5 wt%TiB2 composites were fabricated through salt–melt reaction using halide salts such as potassium hexafluorotitanate (K2TiF6) and potassium tetra fluoroborate (KBF4) salts as precursors. The composites were produced at four different melt temperatures (700, 750, 800, 850 °C). The formation of particle was confirmed from XRD results. The wear behaviour of Al/5 wt% TiB2 composite was investigated by varying the wear test parameters such as sliding temperature (25, 100, 150, 200 °C), applied load (10, 20, 30, 40 N), sliding velocity (0.4, 0.7, 1, 1.3 m/s). The microstructure of Al/5 wt% TiB2 composite was correlated with the wear characteristics of the composites. The wear resistance of Al/5 wt% TiB2 composite was significantly improved due to the presence of TiB2 particle in Al matrix material. The composite produced at melt temperature 800 °C showed a higher wear resistance at applied load: 10 N, sliding temperature: 25 °C and sliding velocity: 0.7 m/s. The wear mechanism for each of the tested condition was identified from the worn surfaces using scanning electron microscopy (SEM). ANOVA test was carried out to find out significant factor for the wear resistance of composite. The checking of adequacy of experimental value for the wear behaviour of composite for different testing condition was analysed by residual plots using statistical software.  相似文献   

9.
The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly affect the friction. This is the case for rubber sliding on road surfaces at speeds above 1 mm/s. I derive equations which describe the frictional heating for arbitrary (non-uniform) motion, taking into account that some of the frictional energy is produced inside the rubber due to the internal friction in rubber. Numerical results are presented for one limiting case for steady sliding.  相似文献   

10.
The tribological behaviour, hardness and microstructural characteristics of vacuum and cryogenically treated AISI H11 steel at varied soaking temperature (?154 and ?184 °C) for specific time period (6, 21 and 36 h) have been examined in this research work. The influence of selected parameters on the tribological behaviour have been studied at five levels of varying sliding velocities (0.628–1.885 m/s) and normal loads (60–140 N) through block–on–ring dry sliding wear test against hardened and tempered AISI D3 tool steel (counter face). The experiments are designed based on full factorial response surface methodology. The responses (wear rate, average coefficient of friction and maximum contact temperature) are analyzed based on plotted graphs. The results reveal that 21 h at ?184 °C for H11steel is the optimal soak time to have the lowest wear rate. The sliding speed influences the wear rate more in comparison to load. Wear debris have shape of metallic plate. Carbide particles appeared to delaminate from the sample surface due to subsurface cracks and plastic deformation. The augmentation of apparent and bulk hardness number and wear resistance ascribed to the increase in number of fine globular secondary carbide and improved morphology of matrix microstructure of cryogenic-treated sample. It is also observed that cryogenic treatment reduces the retained austenite content to near zero.  相似文献   

11.
12.
Tests for the wear of polytetrafluoroethylene and composites on its basis with different glass transition and softening temperatures has been performed. It has been demonstrated that a rise in temperature leads to an abrupt rise in wear due to the build up of adhesive on the metallic counterbody. The method of temperature calculations in the frictional contact zone has been developed and tested. It has been demonstrated that the introduction of filler into polytetrafluoroethylene results in a rise in the glass transition temperature from–120°C, which corresponds to polytetrafluoroethylene, to +150°C.  相似文献   

13.
Many biological interfaces provide low friction aqueous lubrication through the generation and maintenance of a high water content polymeric surface gel. The lubricity of such gels is often attributed to their high water content, high water permeability, low elastic modulus, and their ability to promote a water film at the sliding interface. Such biological systems are frequently characterized as “soft,” where the elastic moduli are on the order of megapascals or even kilopascals. In an effort to explore the efficacy of such systems to provide lubricity, a thin and soft hydrogel surface layer (~5 μm in thickness) with a water content of over >80 % was constructed on a silicone hydrogel contact lens, which has a water content of approximately 33 %. Nanoindentation measurements with colloidal probes on atomic force microscopy (AFM) cantilevers revealed an exceedingly soft elastic modulus of ~25 kPa. Microtribological experiments at low contact pressures (6–30 kPa) and at slow sliding speeds (5–200 μm/s) gave average friction coefficients below μ = 0.02. However, at higher contact pressures, the gel collapsed and friction loops showed a pronounced stick–slip behavior with breakloose or static friction coefficient above μ = 0.5. Thus, the ability of the soft surface hydrogel layers to provide lubricity is dependent on their ability to support the applied pressure without dehydrating. These transitions were found to be reversible and experiments with different radii probes revealed that the transition pressures to be on the order of 10–20 kPa.  相似文献   

14.
This study was undertaken to investigate the effect of heat treatments on the high-temperature wear behavior of 60Nitinol. The samples were hot-worked, aged at two temperatures of 400 and 700°C for 1 h and then water quenched. The microstructure of the alloys was investigated by scanning electron microscopy and X-ray diffraction. Sliding wear tests were performed at two temperatures of 25 and 200°C using three types of 60Nitinol disks: hot-worked, aged at 400°C, and aged at 700°C. All wear tests were performed at a speed of 0.3 m/s under a normal load of 60 N for a total sliding distance of 1,000 m using WC-Co pins sliding against 60Nitinol disks. The worn surfaces and microstructure of the subsurfaces were studied by scanning electron microscopy. Compression and hardness tests were also performed to characterize the mechanical properties of the alloys. The highest fracture strain and lowest hardness were obtained for the sample aged at 700°C that contained Ni3Ti2 precipitants. This sample also showed the maximum wear resistance at a wear testing temperature of 200°C. This was attributed to the formation of a more compact and stable tribological layer on the worn surface of the softer sample.  相似文献   

15.
Dry sliding tribological properties of TiAl matrix self-lubricating composites (TMSC) containing Ag, Ti3SiC2, Ag and Ti3SiC2 were investigated from 25 to 800 °C under ball-on-disk test conditions against Si3N4 counterface under the same conditions of 10 N-0.234 m/s. The results indicated that the tribological properties were strongly dependent on the lubricant additives. TMSC with the addition of Ag and Ti3SiC2 (TAT) exhibited the lower friction coefficients (0.32–0.43) and less wear rates (1.23–4.13 × 10?4 mm3 N?1m?1) in the wide temperature range of 25–800 °C. The excellent tribological properties of TAT over the wide temperature range were attributed to the synergetic effect of Ag and Ti3SiC2 lubricants, silver diffusion forming a rich-silver smooth tribo-film on the frictional surface of TAT at low and moderate temperatures from 25 to 400 °C, while Ti3SiC2 oxidation reaction forming rich-oxide tribo-film on the worn surface of TAT at higher temperatures of 600 and 800 °C.  相似文献   

16.
The surface topography of the human wrist skin is studied using an optical method and the surface roughness power spectrum is obtained. The Persson contact mechanics theory is used to calculate the contact area for different magnifications, for both dry and wet condition of the skin. For dry skin, plastic yielding becomes important and will determine the area of contact observed at the highest magnification. The measured friction coefficient [M.J. Adams et al., Tribol Lett 26:239, 2007] on both dry and wet skin can be explained assuming that a frictional shear stress σf ≈ 15 MPa acts in the area of real contact during sliding. This frictional shear stress is typical for sliding on polymer surfaces, and for thin (nanometer) confined fluid films. The big increase in the friction, which has been observed for glass sliding on wet skin as the skin dries up, can be explained as resulting from the increase in the contact area arising from the attraction of capillary bridges. This effect is predicted to operate as long as the water layer is thinner than ~14 μm, which is in good agreement with the time period (of order 100 s) over which the enhanced friction is observed (it takes about 100 s for ~14 μm water to evaporate at 50% relative humidity and at room temperature). We calculate the dependency of the sliding friction coefficient on the sliding speed on lubricated surfaces (Stribeck curve). We show that sliding of a sphere and of a cylinder gives very similar results if the radius and load on the sphere and cylinder are appropriately related. When applied to skin the calculated Stribeck curve is in good agreement with experiment, except that the curve is shifted by one velocity-decade to higher velocities than observed experimentally. We explain this by the role of the skin and underlying tissues viscoelasticity on the contact mechanics.  相似文献   

17.
We have developed a technique for measuring frictional forces and contact areas, over a wide range of applied loads, at microscopic contacts reaching high sliding speeds near 1 m/s. Our approach is based on integrating two stand-alone methods: nanoindentation and quartz crystal microbalance (QCM). Energy dissipation and lateral contact stiffness are monitored by a transverse shear quartz resonator, while a spherical indenter probe is loaded onto its surface. Variations in these two quantities as functions of shear amplitude, with the normal load held fixed, reveal a transition from partial to full slip at a critical amplitude. Average values of both the threshold force for full slip and the kinetic friction during sliding are determined from these trends, and the contact area is inferred from the lateral stiffness at low shear amplitudes. Measurements are performed at loads ranging from 5 µN to 8 mN using an electrostatically actuated indenter probe. For the materials chosen in this study, we find that the full slip threshold force is about a factor of two larger than kinetic friction. The forces increase sublinearly with load in close correspondence with the contact area, and the shear strengths are found to be relatively insensitive to pressure. The threshold shear amplitude scales in proportion to the contact radius. These results demonstrate that the probe–QCM technique is a versatile and full-featured platform for microtribology in the speed range relevant to practical applications.  相似文献   

18.
Friction, and in particular stick-slip friction, occurs on every length scale, from the movement of atomic force microscope tips at the nanoscale to the movement of tectonic plates of the Earth’s crust. Even with this ubiquity, there still appears to be outstanding fundamental questions, especially on the way that frictional motion varies generally with the mechanical parameters of a system. In this study, the frictional dynamics of the hook-and-loop system of Velcro® in shear is explored by varying the typical parameters of driving velocity, applied load, and apparent contact area. It is demonstrated that in Velcro® both the maximum static frictional force and the average kinetic frictional force vary linearly with apparent contact area (hook number), and moreover, in the kinetic regime, stick-slip dynamics are evident. Surprisingly, the average kinetic friction force is independent of velocity over nearly two-and-a-half orders of magnitude (~2 × 10?4 to ~6 × 10?2 m/s). The frictional force varies as a power law on the applied load with an exponent of 0.28 and 0.24 for the maximum static and kinetic frictional forces, respectively. Furthermore, the evolution of stick-slip friction to more smooth sliding, as controlled by contact area, is demonstrated by both a decrease in the spread of the kinetic friction and the spread of the fluctuations of the average kinetic friction when normalized to the average kinetic friction; these decreases follow power-law behaviors with respect to the increasing contact area with exponents of approximately ?0.3 and ?0.8, respectively. Lastly, we note that the coefficients of friction μ s and μ k are not constant with applied load but rather decrease monotonically with power-law behavior with an exponent of nearly ?0.8. Phenomenologically, this system exhibits interesting physics whereby in some instances it follows classical Amontons–Coulomb (AC) behavior and in others lies in stark contrast and hopefully will assist in the understanding of the friction behavior in dry surfaces.  相似文献   

19.
Wear behavior of Mg–3Al–0.4Si–0.1Zn alloy was studied as a function of applied load and sliding speed under dry sliding conditions using a pin-on-disk configuration within 20–380 N and 0.1–4.0 m/s. An empirical wear transition map has been constructed to delineate the conditions under which severe wear initiated. The roles of microstructural evolution, hardness change in subsurface and surface oxidation on wear transition were also studied. The results indicate that the transition to severe wear occurs when the deformed microstructure in surface layer of material transforms into dynamic recrystallization (DRX) microstructure. A contact surface DRX temperature criterion for mild to severe wear transition is proposed, and the contact surface DRX temperatures are calculated using activation energy obtained by hot compression tests. A model for predicating mild to severe wear transition load has been developed based on the proposed contact surface DRX temperature criterion. The mild to severe wear transition loads are well predicted within the sliding speed range of 0.8–4.0 m/s.  相似文献   

20.
Diffusion bonding of high-carbon steel was carried out in vacuum brazing furnace at temperature 900–1,050 °C for 0.5 h under uniaxial load using Ni foil interlayer. Microstructure of assemblies was studied along with effect of diffusion of chemical species in reaction zone and mechanical properties. Microstructure of substrate was changed from martensite to austenite at bonding temperature and subsequently to ferrite–pearlite during cooling to ambient temperature. Diffusion zone did not exhibit formation of any intermetallic compounds. Bond strength was governed by degree of solid solution hardening and contact area of mating surfaces depending on joining parameters. In this respect, maximum ultimate strength of ~532 MPa was obtained along with shear strength of ~792 MPa for the joint processed at 1,050 °C, which was higher than literature reports on martensitic steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号