首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Network restoration is often done at the electronic layer by rerouting traffic along a redundant path. With wavelength-division multiplexing (WDM) as the underlying physical layer, it is possible that both the primary and backup paths traverse the same physical links and would fail simultaneously in the event of a link failure. It is, therefore, critical that lightpaths are routed in such a way that a single link failure would not disconnect the network. We call such a routing survivable and develop algorithms for survivable routing of a logical topology. First, we show that the survivable routing problem is NP-complete. We then prove necessary and sufficient conditions for a routing to be survivable and use these conditions to formulate the problem as an integer linear program (ILP). Due to the excessive run-times of the ILP, we develop simple and effective relaxations for the ILP that significantly reduces the time required for finding survivable routings. We use our new formulation to route various logical topologies over a number of different physical topologies and show that this new approach offers a much greater degree of protection than alternative routing schemes such as shortest path routing and a greedy routing algorithm. Finally, we consider the special case of ring logical topologies for which we are able to find a significantly simplified formulation. We establish conditions on the physical topology for routing logical rings in a survivable manner  相似文献   

2.
This paper presents a distributed algorithm to determine fault avoiding routes between source-destination end-node pairs in an all-optical network. Fault-tolerant routing for WDM routed all-optical networks has not been studied in details in the literature except for using protection switching or loopback recovery. Such schemes use predetermined protection mechanism and hence assume that the protection path is not faulty. This paper considers extensions to a dynamic routing scheme (presented earlier by these authors for fault-free networks) to handle rerouting in case of fault occurrence. The performance degradations of the network because of fault occurrence are then studied in terms of blocking probability and set-up time through simulations.  相似文献   

3.
In IP-over-WDM networks, a logical IP network is routed on top of a physical optical fiber network. An important challenge here is to make the routing survivable. We call a routing survivable if the connectivity of the logical network is guaranteed in the case of a failure in the physical network. In this paper we describe FastSurv, a local search algorithm for survivable routing. The algorithm works in an iterative manner: after each iteration it learns more about the structure of the logical graph and in the next iteration it uses this information to improve its solution. The algorithm can take link capacity constraints into account and can be extended to deal with multiple simultaneous link failures and node failures. In a large series of tests we compare FastSurv with current state-of-the-art algorithms for this problem. We show that it can provide better solutions in much shorter time, and that it is more scalable with respect to the number of nodes, both in terms of solution quality and run time.  相似文献   

4.
This paper focuses on the survivable routing problem in WDM mesh networks where the objective is to minimize the total number of wavelengths used for establishing working and protection paths in the WDM networks. The past studies for survivable routing suffers from the scalability problem when the number of nodes/links or connection requests grows in the network. In this paper, a novel path-based shared protection framework, namely inter group shared protection (I-GSP), is proposed where the traffic matrix can be divided into multiple protection groups (PGs) based on specific grouping policy. Optimization is performed on these PGs such that sharing of protection wavelengths is considered not only inside a PG, but between the PGs. Simulation results show that I-GSP based integer linear programming model, namely, ILP-II solves the networks in a reasonable amount of time for which a regular integer linear programming formulation, namely, ILP-I becomes computationally intractable. For most of the cases the gap between the optimal solution and the ILP-II stays within 6%. The proposed ILP-II model yields a scalable solution for the capacity planning in the survivable optical networks based on the proposed I-GSP protection architecture.  相似文献   

5.
One of the most important performance measurements in wavelength-division multiplexing (WDM) networks is the call blocking probability. In this paper, we present an approximate analytical method to evaluate the blocking probabilities in survivable WDM networks with dynamically arriving connection requests. Our approach utilizes the wavelength independence whereby WDM network can be regarded as an aggregation of disjoint single wavelength sub-networks with a common physical topology. In each single wavelength sub-network, we derive the calculation of the blocking probability from an exact analysis. We assume dedicated protection with fixed routing and either first-fit or random wavelength assignment. Simulation results demonstrate the accuracy of the proposed method.  相似文献   

6.
This paper considers wavelength routed WDM networks where multiple fibers are used for each communication link. For such networks, the effect of wavelength translation can be achieved without explicit use of wavelength translators. We call this as virtual wavelength translation and study the routing issues considering dynamic lightpath allocation. Using multiple (or a bundle of) fibers for each link also allows us to have bundles of varying sizes to accommodate anticipated differences in traffic through different communication links of the network. The paper considers the blocking probabilities of all-optical networks when centralized and distributed lightpath allocation schemes are used.  相似文献   

7.
In this paper, a survivable routing algorithm is proposed for shared segment protection (SSP), called optimal self-healing loop allocation (OSHLA), which dynamically allocates spare capacity for a given working lightpath in mesh wavelength-division-multiplexing (WDM) networks with partial wavelength conversion capability. Two novel graph transformation approaches, namely graph of cycles and wavelength graph of paths, are introduced to solve this problem, in which the task of survivable routing is formulated as a series of shortest path searching processes. In addition to an analysis on the computation complexity, a suite of experiments is conducted to verify OSHLA on four networks with different topologies and traffic loads. We find that the blocking probability and computation complexity are dominated by the upper bound on the length of the working and protection segments. Comparison is made between OSHLA and four other reported schemes in terms of blocking probability. The results show that OSHLA can achieve the lowest blocking probability under the network environment of interest. We conclude that OSHLA provides a generalized framework of survivable routing for an efficient implementation of SSP in mesh WDM partial wavelength convertible networks. With OSHLA, a compromise is initiated by manipulating the upper bound on the length of working and protection segments such that the best performance-computation complexity gain can be achieved.  相似文献   

8.
This paper introduces an approach to solving the fundamental scalability problem of all-optical packet switching wavelength-division multiplexing (WDM) access networks. Current optical networks cannot be scaled by simply adding nodes to existing systems due to the accumulation of insertion losses and/or the limited number of wavelengths. Scalability through bridging requires, on the other hand, the capability to switch packets among adjacent subnetworks on a wavelength basis. Such a solution is, however, not possible due to the unavailability of fast-switching wavelength sensitive devices. In this paper, we propose a scalable WDM access network architecture based on a recently proposed optical switching approach, termed photonic slot routing. According to this approach, entire slots, each carrying multiple packets (one on each wavelength) are “transparently” routed through the network as single units so that wavelength sensitive data flows can be handled using fast-switching wavelength nonsensitive devices based on proven technologies. The paper shows that the photonic slot routing technique can be successfully used to achieve statistical multiplexing of the optical bandwidth in the access network, thus providing a cost-effective solution to today's increasing bandwidth demand for data transmissions  相似文献   

9.
In WDM networks, path protection has emerged as a widely accepted technique for providing guaranteed survivability of network traffic. However, it requires allocating resources for backup lightpaths, which remain idle under normal fault-free conditions. In this paper, we introduce a new design strategy for survivable network design, which guarantees survivability of all ongoing connections that requires significantly fewer network resources than protection based techniques. In survivable routing, the goal is to find a Route and Wavelength Assignment (RWA) such that the logical topology remains connected for all single link failures. However, even if the logical topology remains connected after any single link fault, it may not have sufficient capacity to support all the requests for data communication, for all single fault scenarios. To address this deficiency, we have proposed two independent but related problem formulations. To handle our first formulation, we have presented an Integer Linear Program (ILP) that augments the concept of survivable routing by allowing rerouting of sub-wavelength traffic carried on each lightpath and finding an RWA that maximizes the amount of traffic that can be supported by the network in the presence of any single link failure. To handle our second formulation, we have proposed a new design approach that integrates the topology design and the RWA in such a way that the resulting logical topology is able to handle the entire set of traffic requests after any single link failure. For the second problem, we have first presented an ILP formulation for optimally designing a survivable logical topology, and then proposed a heuristic for larger networks. Experimental results demonstrate that this new approach is able to provide guaranteed bandwidth, and is much more efficient in terms of resource utilization, compared to both dedicated and shared path protection schemes.  相似文献   

10.
In wavelength division multiplexing (WDM) networks, failures may imply severe loss of data due to the high transmission rates, leading to the need for employment of protective mechanisms. Transparency and switching in all-optical networks cause physical impairment, which can significantly degrade signal quality. If the signal quality along a path is below acceptable values, this path cannot be used for incoming requests in the establishment of lightpaths. Therefore, quality must be checked by the routing and wavelength assignment algorithm. The present article introduces two novel algorithms for shared path protection in WDM networks that take into consideration the Polarization Mode Dispersion, Amplifier Spontaneous Emission, and homowavelength cross-talk physical impairments during path selection. The efficiency of these algorithms is compared to that of their impairment-unaware counterparts.  相似文献   

11.
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength-division-multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated-protection and shared-protection schemes are considered. Given network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures, such as fiber cut and duct cut, we consider the general shared-risk-link-group (SRLG) diverse routing constraints. We first resort to the integer-linear-programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA), and tabu-search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model, respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu-search (TS) method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.  相似文献   

12.
The need for on‐demand provisioning of wavelength‐routed channels with service‐differentiated offerings within the transport layer has become more essential because of the recent emergence of high bit rate Internet protocol (IP) network applications. Diverse optical transport network architectures have been proposed to achieve the above requirements. This approach is determined by fundamental advances in wavelength division multiplexing (WDM) technologies. Because of the availability of ultra long‐reach transport and all‐optical switching, the deployment of all‐optical networks has been made possible. The concurrent transmission of multiple streams of data with the assistance of special properties of fiber optics is called WDM. The WDM network provides the capability of transferring huge amounts of data at high speeds by the users over large distances. There are several network applications that require the support of QoS multicast, such as multimedia conferencing systems, video‐on‐demand systems, real‐time control systems, etc. In a WDM network, the route decision and wavelength assignment of lightpath connections are based mainly on the routing and wavelength assignment (RWA). The multicast RWA's task is to maximize the number of multicast groups admitted or minimize the call‐blocking probability. The dynamic traffic‐grooming problem in wavelength‐routed networks is generally a two‐layered routing problem in which traffic connections are routed over lightpaths in the virtual topology layer and lightpaths are routed over physical links in the physical topology layer. In this paper, a multicast RWA protocol for capacity improvement in WDM networks is designed. In the wavelength assignment technique, paths from the source node to each of the destination nodes and the potential paths are divided into fragments by the junction nodes and these junction nodes have the wavelength conversion capability. By using the concept of fragmentation and grouping, the proposed scheme can be generally applied for the wavelength assignment of multicast in WDM networks. An optimized dynamic traffic grooming algorithm is also developed to address the traffic grooming problem in mesh networks in the multicast scenario for maximizing the resource utilization and minimizing the blocking probability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Shared protection in mesh WDM networks   总被引:1,自引:0,他引:1  
This article introduces the design principles and state-of-the-art progress in developing survivable routing schemes for shared protection in mesh WDM networks. This article first gives an overview of the diverse routing problem for both types of protection in mesh networks, path-base and segment shared protection; then the cost function and link state for performing diverse routing are defined by which the maximum extent of resource sharing can be explored in the complete routing information scenario. Review is conducted on the most recently reported survivable routing schemes along with state-of-the-art progress in diverse routing algorithms for segment shared protection. The following three reported algorithms are discussed in detail: iterative two-step-approach, potential backup cost, and maximum likelihood relaxation.  相似文献   

14.
This paper deals with the problem of survivable routing and wavelength assignment in layer 1 virtual private networks (VPNs). The main idea is routing the selected lightpaths by the layer 1 VPN customer, in a link-disjoint manner. The customer may freely identify some sites or some connections, and have their related lightpaths routed through link-disjoint paths through the provider’s network. This selective survivability idea creates a new perspective for survivable routing, by giving the customer the flexibility of selecting important elements (nodes or connections) in its network. This study is different from previous studies which aim to solve the survivable routing problem for the whole VPN topology. The proposed scheme is two-fold: disjoint node based, and disjoint lightpath based. In disjoint node scheme, all lightpaths incident to a node are routed mutually through link-disjoint paths. In disjoint lightpath scheme, a lightpath is routed in a link-disjoint manner from all other ligthpaths of the VPN. We present a simple heuristic algorithm for selective survivability routing. We study the performance of this algorithm in terms of resources allocated by the selective survivability routing scheme compared to shortest path routing with no survivability. The numerical examples show that the amount of used resources by the selective survivability scheme is only slightly more than the amount used in shortest path routing, and this increase is linear. The extra resources used by the new scheme are justified by better survivability of the VPN topology in case of physical link failures, and the simplicity of the implementation.  相似文献   

15.
In this paper, we propose a novel robust routing algorithm based on Valiant load-balancing under the model of polyhedral uncertainty (i.e., hose uncertainty model) for WDM (wavelength division multiplexing) mesh networks. Valiant load-balanced robust routing algorithm constructs the stable virtual topology on which any traffic patterns under the hose uncertainty model can be efficiently routed. Considering there are multi-granularity connection requests in WDM mesh networks, we propose the method called hose-model separation to solve the problem for the proposed algorithm. Our goal is to minimize total network cost when constructing the stable virtual topology that assures robust routing for the hose model in WDM mesh networks. A mathematical formulation (integer linear programming, ILP) about Valiant load-balanced robust routing algorithm is presented. Two fast heuristic approaches are also proposed and evaluated. We compare the network throughput of the virtual topology constructed by the proposed algorithm with that of the traditional traffic grooming algorithm under the same total network cost by computer simulation.  相似文献   

16.
In multi-domain wavelength-division-multiplexing (WDM) optical networks, the inter-domain routing is a challenge since each single-domain cannot view the full network topology. At the same time, survivability is also an important issue in optical networks since the failures of fiber links or network nodes may lead to a lot of traffic being blocked. In this paper, we study the survivability in multi-domain WDM optical networks, and propose a new survivable mechanism called load balanced domain-by-domain routing (LBDDR). In LBDDR, in order to obtain the efficient inter-domain survivable routes, we present the domain-by-domain routing (DDR) method which can find the intra-domain sub-working path and sub-backup path in each single-domain to form the inter-domain working path and backup path for each demand. In order to reduce the blocking probability, we present the load balanced routing method which can encourage the traffic to be uniformly distributed on the links with more free wavelengths. Simulation results show that, compared with conventional mechanism, LBDDR can obtain better performances.  相似文献   

17.
Routing in wavelength-routed all-optical WDM networks has received much attention in the past decade, for which fixed and dynamic routing methods have been proposed. Taking into account the observation that wavelength-routed all-optical WDM networks are similar to circuit-switched voice networks, except with regard to wavelength conversion, we propose an adaptive alternate routing (AAR) scheme for wavelength-routed all-optical WDM networks. A major benefit of AAR is that it can operate and adapt without requiring an exchange of network status, i.e., it is an information-less adaptive routing scheme. The scope of this work is to understand this scheme in its own right since no other dynamic routing schemes are known to have the information-less property. In this paper, we conduct a systematic study of AAR with regard to factors such as the number of converters, load conditions, traffic patterns, network topologies, and the number of alternate paths considered. We observe that the routing scheme with multiple alternate routes provides more gain at a lower load instead of requiring any nodes to be equipped with wavelength converters. On the other hand, the availability of wavelength converters at some nodes, along with adaptive routing, is beneficial at a moderate to high load without requiring all nodes to be equipped with wavelength converters. We also observed that a small number of alternate routes considered in a network without wavelength converters gives a much better performance than a network with full wavelength converters and fewer alternate routes. Throughout this study, we observed that the proposed adaptive alternate routing scheme adapts well to the network traffic condition.  相似文献   

18.
In optical Wavelength Division Multiplexing (WDM) networks, different protection schemes have been proposed in the literature, namely, dedicated protection and shared protection. Shared protection techniques significantly reduce the required spare capacity by providing the same level of availability as dedicated protection. However, current mission critical applications (which heavily depend on the availability of communication resources) require connection availability in the order of 99.999% or higher, which corresponds to a downtime of almost 5 min a year on the average. Therefore, in order to satisfy a connection serviceavailability requirement defined by the users Service Level Agreement in a cost-effective and resource-efficient way, network operators need a systematic mechanism to evaluate the network availability under multiple failure scenario to ensure that current network configuration can meet the required availability degree; otherwise, a network upgrade is required. Unfortunately, under multiple failure scenario, traditional availability analysis techniques based on reliability block diagrams are not suitable for survivable networks with shared spare capacity. Therefore, a new concept is proposed to facilitate the calculations of network availability. In this paper, we propose an analytical model for evaluating the availability of a WDM network with shared-link connections under multiple link failures. The analytical model is also verified using Monte Carlo simulation. The proposed model significantly contributes to the related areas by providing network operators with a quantitative tool to evaluate the system availability and, thus, the expected survivability degree of WDM optical networks with shared connections under multiple link failures.  相似文献   

19.
《IEEE network》2009,23(3):26-33
We consider the offline version of the routing and wavelength assignment problem in transparent all-optical networks. In such networks and in the absence of regenerators, the signal quality of a transmission degrades due to physical layer impairments. Certain physical effects cause choices for one lightpath to affect and be affected by the choices made for other lightpaths. This interference among lightpaths is particularly difficult to formulate in an offline algorithm, since in this version of the problem we start without any established connections, and the utilization of lightpaths are the variables of the problem. For this reason the majority of work performed in this field either neglects lightpath interactions or assumes a worst case interference scenario. In this article we present a way to formulate interlightpath interference as additional constraints on RWA and show how to incorporate these constraints in an IA-RWA algorithm that directly accounts for the most important physical layer impairments. The objective of the resulting cross-layer optimization problem is not only to serve the connection requests using the minimum number of wavelengths (network layer objective), but also to select lightpaths that have acceptable quality of transmission performance (physical layer objective).  相似文献   

20.
研究了多域光网络中的路由保护问题。为了避免多域光网络通路保护二步算法可能导致的多域陷阱问题,提出了一种基于Suurballe算法扩展的多域联合路由保护算法。仿真表明,相比传统的多域通路保护二步算法,该算法资源利用率高,阻塞率低,平均每连接跨域数小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号