首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The appearance of undesirable bitter taste in Ragusano cheese was investigated by comparing the composition of 9 bitter cheeses with that of 9 reference cheeses of good quality by means of chemical, electrophoretic, and chromatographic analyses. Rates of proteolysis were significantly affected in cheeses of different quality. Primary proteolysis, as measured by pH 4.6-soluble N, was significantly greater in bitter cheeses compared with reference samples. Urea-PAGE profiles showed an almost complete breakdown of caseins in bitter cheeses and the further degradation of primary peptides into smaller compounds not detectable by this technique. Cheeses with defects had significantly lower levels of secondary proteolysis as reflected by the percentage of pH 4.6-soluble N soluble in 12% trichloroacetic acid and the amounts of total free amino acids. Peptides separated by reversed phase-HPLC revealed that the large and significant differences in peptide profiles of the soluble fractions between bitter and reference cheeses were mainly due to a much higher proportion of hydrophobic peptides in the former. The occurrence of bitterness in Ragusano cheese was therefore attributable to unbalanced levels of proteolysis and peptidolysis. Extensive degradation of caseins and primary peptides by activities of proteases produced large amounts of small- and medium-sized hydrophobic peptides that were not adequately removed by peptidases of microflora and therefore accumulated in cheese potentially contributing to its bitter taste. The presence of these compounds in bitter cheeses was related to high salt-in-moisture and low moisture contents that limited the enzymatic activities of microflora important in secondary proteolysis. Combining salt-in-moisture and the ratio of hydrophobic-to-hydrophilic soluble peptides resulted in the best logistic partial least squares regression model predicting cheese quality. Although bitterness is known to be rarely encountered in cheese at salt-in-moisture levels >5.0, all of the bitter cheeses analyzed in this study had salt-in-moisture levels much greater than this value. According to the logistic model, a risk of bitterness development may exist for cheeses with a midrange (5 to 10%) salt-in-moisture content but with an inadequate level of secondary proteolysis.  相似文献   

3.
The impact of presalting and nonsaturated brine on salt uptake by Ragusano cheese was determined. The study included four treatments: 1) the traditional method using no presalting and saturated brine, 2) presalting and saturated brine, 3) no presalting and 18% brine for 8 d followed by 16 d in saturated brine, and 4) presalting and 18% brine for 8 d followed by 16 d in saturated brine. Cheese blocks were weighed and sampled before brine salting (time 0) and after 1, 4, 8, 16, and 24 d of brining for each treatment. Presalting delivered 60% of the normal level of salt in the center of the block prior to brine salting without decreasing the rate of uptake of salt from either saturated or 18% brine. Use of 18% salt brine for the first 8 d of 24 d of brine salting increased the rate of salt uptake, compared with 24 d in saturated brine. The increased rate of salt uptake with 18% brine compared with saturated brine was related to the impact of salt brine on the moisture content and porosity of the cheese near the surface of the block. Brine with higher salt content causes a rapid loss of moisture from cheese near the surface of the block. Moisture loss causes shrinkage of the cheese structure and decreases porosity, which impedes moisture movement out and salt movement into the block. The use of 18% salt brine for the first 8 d delayed the moisture loss and cheese shrinkage at the exterior of the block and allowed more salt penetration.  相似文献   

4.
Chemometric analysis of proteolysis during ripening of Ragusano cheese   总被引:3,自引:0,他引:3  
Chemometric modeling of peptide and free amino acid data was used to study proteolysis in Protected Denomination of Origin Ragusano cheese. Twelve cheeses ripened 3 to 7 mo were selected from local farmers and were analyzed in 4 layers: rind, external, middle, and internal. Proteolysis was significantly affected by cheese layer and age. Significant increases in nitrogen soluble in pH 4.6 acetate buffer and 12% trichloroacetic acid were found from rind to core and throughout ripening. Patterns of proteolysis by urea-PAGE showed that rind-to-core and age-related gradients of moisture and salt contents influenced coagulant and plasmin activities, as reflected in varying rates of hydrolysis of the caseins. Analysis of significant intercorrelations among chemical parameters revealed that moisture, more than salt content, had the largest single influence on rates of proteolysis. Lower levels of 70% ethanol-insoluble peptides coupled to higher levels of 70% ethanol-soluble peptides were found by reversed phase-HPLC in the innermost cheese layers and as the cheeses aged. Non-significant increases of individual free amino acids were found with cheese age and layer. Total free amino acids ranged from 14.3 mg/g (6.2% of total protein) at 3 mo to 22.0 mg/g (8.4% of total protein) after 7 mo. Glutamic acid had the largest concentration in all samples at each time and, jointly with lysine and leucine, accounted for 48% of total free amino acids. Principal components analysis and hierarchical cluster analysis of the data from reversed phase-HPLC chromatograms and free amino acids analysis showed that the peptide profiles were more useful in differentiating Ragusano cheese by age and farm origin than the amino acid data. Combining free amino acid and peptide data resulted in the best partial least squares regression model (R(2) = 0.976; Q(2) = 0.952) predicting cheese age, even though the peptide data alone led to a similarly precise prediction (R(2) = 0.961; Q(2) = 0.923). The most important predictors of age were soluble and insoluble peptides with medium hydrophobicity. The combined peptide data set also resulted in a 100% correct classification by partial least squares discriminant analysis of cheeses according to age and farm origin. Hydrophobic peptides were again discriminatory for distinguishing among sample classes in both cases.  相似文献   

5.
The influence of temperature (12, 15, 18, 21, and 24 degrees C) of saturated brine on salt uptake by 3.8-kg experimental blocks of Ragusano cheese during 24 d of brining was determined. Twenty-six 3.8-kg blocks were made on each of three different days. All blocks were labeled and weighed prior to brining. One block was sampled and analyzed prior to brine salting. Five blocks were placed into each of five different brine tanks at different temperatures. One block was removed from each brine tank after 1, 4, 8, 16, and 24 d of brining, weighed, sampled, and analyzed for salt and moisture content. The weight loss by blocks of cheese after 24 d of brining was higher, with increasing brine temperature, and represented the net effect of moisture loss and salt uptake. The total salt uptake and moisture loss increased with increasing brine temperature. Salt penetrates into cheese through the moisture phase within the pore structure of the cheese. Porosity of the cheese structure and viscosity of the water phase within the pores influenced the rate and extent of salt penetration during 24 d of brining. In a previous study, it was determined that salt uptake at 18 degrees C was faster in 18% brine than in saturated brine due to higher moisture and porosity of the exterior portion of the cheese. In the present study, moisture loss occurred from all cheeses at all temperatures and most of the loss was from the exterior portion of the block during the first 4 d of brining. This loss in moisture would be expected to decrease porosity of the exterior portion and act as a barrier to salt penetration. The moisture loss increased with increasing brine temperature. If this decrease in porosity was the only factor influencing salt uptake, then it would be expected that the cheeses at higher brine temperature would have had lower salt content. However, the opposite was true. Brine temperature must have also impacted the viscosity of the aqueous phase of the cheese. Cheese in lower temperature brine would be expected to have higher viscosity of the aqueous phase and slower salt uptake, even though the cheese at lower brine temperature should have had a more porous structure (favoring faster uptake) than cheese at higher brine temperature. Therefore, changing brine concentration has a greater impact on cheese porosity, while changing brine temperature has a larger impact on viscosity of the aqueous phase of the cheese within the pores in the cheese.  相似文献   

6.
The influence of temperature (12, 15, 18, 21, and 24 degrees C) of saturated brine on lipolysis and proteolysis in 3.8-kg blocks of Ragusano cheese during 24 d of brining was determined. Twenty-six 3.8-kg blocks were made on each day. The cheese making was replicated on 3 different days. All blocks were labeled and weighed prior to brining. One block was sampled and analyzed prior to brine salting. Five blocks were placed into each of 5 different brine tanks at different temperatures. One block was removed from each brine tank after 1, 4, 8, 16, and 24 d of brining, weighed, sampled, and analyzed. Both proteolysis and lipolysis in Ragusano cheese increased with increasing brine temperature (from 12 to 24 degrees C), with the impact of brine temperature on proteolysis and lipolysis becoming progressively larger. Proteolysis was highest in the interior of the blocks where salt in moisture content was lowest and temperature had more impact on proteolysis in the interior position of the block than the exterior position. However, the opposite was true for lipolysis. The total free fatty acid content was higher and temperature had more impact on lipolysis at the exterior position of the block where salt in moisture was the highest. This effect of increased salt concentration on lipolysis was confirmed with direct salted cheeses in a small follow-up experiment. Lipolysis increased with increasing salt in the moisture content of the direct salted cheeses. It is likely that migration of water-soluble FFA from the brine into the cheese and from the interior portion of the cheese to the exterior portion of the cheese also contributed to a higher level of FFA at the exterior portion of the blocks. As brine temperature increased the profile of individual free fatty acids released from triglycerides changed, with the proportion of short-chain free fatty acids increasing with increasing brine temperature. This effect was largest at high salt in moisture content.  相似文献   

7.
The volatile compounds in Parmigiano-Reggiano cheese were isolated by solvent extraction/high vacuum distillation, followed by separation into acidic, basic, water-soluble, and neutral fractions. The neutral fraction was further fractionated by a normal-phase liquid chromatography. Aroma compounds were identified using gas chromatography/Osme-mass spectrometry and confirmed with retention index of standards. Butanoic, hexanoic, octanoic, and decanoic acids are the major free fatty acids contributing to cheesy, lipolyzed aroma. Ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl propanoate, ethyl pentanoate, ethyl heptanoate, and ethyl decanoate are the major esters contributing to fruity aroma. 2-Methylbutanal, 3-methylbutanal, 2,4-hexadienal, 2-butenal, pentanal, hexanal, heptanal, diacetyl, phenylacetaldehyde, dimethyltrisulfide, and methional were identified to be odor-active. It was found that 2,3-dimethylpyrazine, 2,6-dimethyl-pyrazine, 2,5-dimethyl-3-ethylpyrazine, trimethyl-pyrazine, 5-ethyl-2-methylpyridine, 2,3-dimethyl-5-ethylpyrazine, 2,3,5-trimethyl-6-ethyl-pyrazine, furfural, and 2-furanmethanol contribute to the nutty, roasted aroma in this cheese.  相似文献   

8.
To determine the odor-active compounds in Cheddar cheeses with different ripening times (6, 10, and 14 mo), 39 potent odorants of Cheddar cheeses were identified with a flavor dilution factor range between 1 and 512 by aroma extract dilution analysis. To further determine their contribution to the overall aroma profile of Cheddar cheeses, odor activity values of 38 odorants with flavor dilution factors ≥1 were calculated. A Cheddar cheese matrix was developed to determine the concentrations and the odor thresholds of these key aroma compounds. The result of the aroma recombinant experiment prepared by mixing the key aroma compounds in the concentrations in which they occurred in Cheddar cheeses showed that the overall aroma profile of the recombinant sample was very similar to that of Cheddar cheese. The main different compounds in Cheddar cheese with different ripening time were acetic acid, butanoic acid, dimethyl trisulfide, methional, hexanal, (E)-2-nonenal, acetoin, 1-octen-3-one, δ-dodecalactone, furaneol, hexanoic acid, heptanal, and ethyl caproate. This study could provide important information for researching and developing Cheddar cheese–related products.  相似文献   

9.
Forty-five Holsteins cows in early to mid lactation were used to compare three feeding systems combining pasture and total mixed rations (TMR) on animal performance in a 21-wk repeated-measures experiment. The three treatments were: 1) pasture plus concentrate (PC), 2) pasture plus partial TMR (pTMR), and 3) TMR (non-pasture). Total dry matter intake, using chromic oxide as a marker, was 21.6, 25.2, and 26.7 kg/d for PC, pTMR, and TMR, respectively. Milk production was highest for TMR (38.1 kg/d), lowest on PC (28.5 kg/d), and intermediate for pTMR (32.0 kg/d). Cows on pTMR and TMR had higher milk fat and true protein percentages than cows on PC. Cows on PC gained less body weight and lost more body condition compared with cows on pTMR and TMR. Initial concentrations of plasma nonesterified fatty acids were higher on PC (302 microeq/L) than on pTMR (130 microeq/L) and TMR (225 microeq/L). Plasma and milk urea nitrogen were lower on both pTMR and TMR than on PC. Combining pasture and TMR resulted in higher milk production, milk fat and protein percentage, and maintenance in body condition score compared to pasture plus concentrate. The TMR feeding system resulted in the highest total dry matter intake and milk production.  相似文献   

10.
La Serena cheeses made from raw Merino ewe's milk were high-pressure (HP) treated at 300 or 400 MPa for 10 min on d 2 or 50 after manufacture. Ripening of HP-treated and control cheeses proceeded until d 60 at 8°C. Volatile compounds were determined throughout ripening, and analysis of related sensory characteristics was carried out on ripe cheeses. High-pressure treatments on d 2 enhanced the formation of branched-chain aldehydes and of 2-alcohols except 2-butanol, but retarded that of n-aldehydes, 2-methyl ketones, dihydroxy-ketones, n-alcohols, unsaturated alcohols, ethyl esters, propyl esters, and branched-chain esters. Differences between HP-treated and control cheeses in the levels of some volatile compounds tended to disappear during ripening. The odor of ripe cheeses was scarcely affected by HP treatments on d 2, but aroma quality and intensity scores were lowered in comparison with control cheese of the same age. On the other hand, HP treatments on d 50 did not influence either the volatile compound profile or the sensory characteristics of 60-d-old cheese.  相似文献   

11.
Grazing is considered a normal behavior for dairy cattle, although they may not be able to meet their nutritional requirements from grazing alone, and so to sustain higher yields requires access to a total mixed ration (TMR). The study aim was to provide dairy cows with access to TMR indoors and on pasture to establish influence on behavior and preference for each location. The study took place from August to November, 2009, using 36 late-lactation Holstein-Friesian dairy cows. The cows were allocated to 1 of 3 26-d study periods (n = 12 × 3). Within each period the cows were further divided into a control (n = 6) or treatment (n = 6) group using a crossover design, where the cows were changed between the control and treatment group after 13 d. Treatment cows had access to TMR indoors and on pasture, whereas control cows only had access to TMR indoors. Following a.m. and p.m. milkings the cows were taken to a point equidistant between indoors and pasture and given the choice of going to pasture (1.5 ha) or to a freestall barn. Between milkings the cows had free access between the locations. Initial choice was recorded and a video camera was used to record time spent in each location. Behavior observations were recorded to establish how the cows spent their time during the day. To determine what factors influenced preference, weather conditions, milk yield, body condition score, and lameness were recorded. Initially, the cows chose indoors following milking (96.4 ± 0.80%). Overall, the cows expressed a partial preference for pasture (71.1 ± 1.82%), which was different from 100, 50, and 0%. Study period influenced preference with cows spending less time on pasture as the season progressed (86.7 vs. 68.3 vs. 58.3% for study periods 1, 2, and 3, respectively). Providing the cows with TMR outdoors did not affect pasture use, but resulted in an increase in TMR intake of 2.2 ± 0.41 kg of dry matter/d. The cows spent more time on pasture as the temperature-humidity index indoors (55.6 ± 0.92) and outdoors (54.6 ± 0.82) increased, but rainfall and milk yield did not influence preference. Cows with lameness score >1.5 spent more time indoors (35.4 ± 4.52 vs. 25.2 ± 2.64% for cows with >1.5 vs. ≤1.5 lameness score, respectively). In conclusion, the cows expressed a partial preference for pasture, which was not influenced by providing TMR on pasture.  相似文献   

12.
Potentially important aroma compounds in Parmigiano Reggiano cheese were quantified. Free fatty acids were isolated with ion-exchange chromatography and quantified by gas chromatography. Neutral aroma compounds were quantified with a purge-trap/gas chromatography-mass spectrometry with selective mass ion technique. Odor activity values were calculated based on sensory thresholds reported in literature. The calculated odor activity values suggest that 3-methylbutanal, 2-methylpropanal, 2-methylbutanal, dimethyl trisulfide, diacetyl, methional, phenylacetaldehyde, ethyl butanoate, ethyl hexanoate, ethyl octanoate, acetic, butanoic, hexanoic, and octanoic acids are the most important aroma contributors to Parmigiano Reggiano cheese.  相似文献   

13.
Six multiparous Holstein cows fitted with rumen cannulas were used to study the effect of three feeding systems combining pasture and total mixed rations (TMR) on ruminal digestion in a 21-wk repeated measures experiment. The three treatments were: 1) pasture plus concentrate (PC), 2) pasture plus partial TMR (pTMR), and 3) TMR (nonpasture). Ruminal NH3-N concentration was lower on both the pTMR and TMR treatments (10.2 +/- 0.5 mg/dL) than on the PC treatment (19.9 +/- 0.5 mg/dL). Ruminal pH was not affected by treatments and averaged 5.87. Neither total volatile fatty acid concentration (137.5 mmol/L) nor individual volatile fatty acid proportions (63.1,20.6, and 12.0 mol/ 100 mol for acetate, propionate, and butyrate, respectively) differed among treatments. The pTMR treatment reduced the total potentially degradable fraction of dry matter (85.5 vs. 82.3%) and the potentially digestible fraction of neutral detergent fiber (82.1 vs. 74.9%) of pasture compared to the PC treatment. Ruminal NH3-N losses were reduced when combining pasture and TMR; however this combination decreased the ruminal digestion of pasture, indicating the presence of associative effects in the rumen.  相似文献   

14.
15.
16.
Goat milk Jack cheeses were manufactured with different levels of proteolytic endo- and exopeptidases from lysed bacterial cultures and aged for 30 wk. The aroma compounds that are potentially important in contributing the typical flavor of goat milk Jack cheese were quantified using static headspace gas chromatography. The concentrations of volatile compounds were evaluated every 6 wk throughout the aging period. Odor activity values of volatile compounds were calculated using the sensory threshold values reported in literature and their concentrations in Jack cheeses. Odor activity values of identified compounds were used to assess their potential contribution to the aroma of goat milk Jack cheeses. The odor activity values indicated that the ketones 2-hexanone, 2-heptanone, 2-nonanone, and 2,3-butanedione (diacetyl) were important odor-active compounds. The major odor-active acids found in this semi-hard goat milk cheese were butanoic, 2-methyl butanoic, pentanoic, hexanoic, and octanoic acids. Among the aldehydes, propanal and pentanal had high odor activity values and likely contributed to the aroma of this cheese. The concentrations of butanoic, pentanoic, hexanoic, heptanoic, octanoic, and nonanoic acids increased significantly in goat milk Jack cheese throughout aging. The extracted enzymes from lysed bacterial cultures that were added to the cheeses during manufacturing caused considerable increases in the concentrations of butanoic and hexanoic acids compared with the control. However, the lower concentration of peptidases resulted in an increased concentration of butanal, whereas more peptidases resulted in a lower concentration of 2-nonanone in goat milk Jack cheeses.  相似文献   

17.
The purpose of this study was to investigate the effects of pasture-based versus indoor total mixed ration (TMR) feeding systems on the chemical composition, quality characteristics, and sensory properties of full-fat Cheddar cheeses. Fifty-four multiparous and primiparous Friesian cows were divided into 3 groups (n = 18) for an entire lactation. Group 1 was housed indoors and fed a TMR diet of grass silage, maize silage, and concentrates; group 2 was maintained outdoors on perennial ryegrass only pasture (GRS); and group 3 was maintained outdoors on perennial ryegrass/white clover pasture (CLV). Full-fat Cheddar cheeses were manufactured in triplicate at pilot scale from each feeding system in September 2015 and were examined over a 270-d ripening period at 8°C. Pasture-derived feeding systems were shown to produce Cheddar cheeses yellower in color than that of TMR, which was positively correlated with increased cheese β-carotene content. Feeding system had a significant effect on the fatty acid composition of the cheeses. The nutritional composition of Cheddar cheese was improved through pasture-based feeding systems, with significantly lower thrombogenicity index scores and a greater than 2-fold increase in the concentration of vaccenic acid and the bioactive conjugated linoleic acid C18:2 cis-9,trans-11, whereas TMR-derived cheeses had significantly higher palmitic acid content. Fatty acid profiling of cheeses coupled with multivariate analysis showed clear separation of Cheddar cheeses derived from pasture-based diets (GRS or CLV) from that of a TMR system. Such alterations in the fatty acid profile resulted in pasture-derived cheeses having reduced hardness scores at room temperature. Feeding system and ripening time had a significant effect on the volatile profile of the Cheddar cheeses. Pasture-derived Cheddar cheeses had significantly higher concentrations of the hydrocarbon toluene, whereas TMR-derived cheese had significantly higher concentration of 2,3-butanediol. Ripening period resulted in significant alterations to cheese volatile profiles, with increases in acid-, alcohol-, aldehyde-, ester-, and terpene-based volatile compounds. This study has demonstrated the benefits of pasture-derived feeding systems for production of Cheddar cheeses with enhanced nutritional and rheological quality compared with a TMR feeding system.  相似文献   

18.
This study investigated the effects of 3 dairy cow feeding systems on the composition, yield, and biochemical and physical properties of low-moisture part-skim Mozzarella cheese in mid (ML; May–June) and late (LL; October–November) lactation. Sixty spring-calving cows were assigned to 3 herds, each consisting of 20 cows, and balanced on parity, calving date, and pre-experimental milk yield and milk solids yield. Each herd was allocated to 1 of the following feeding systems: grazing on perennial ryegrass (Lolium perenne L.) pasture (GRO), grazing on perennial ryegrass and white clover (Trifolium repens L.) pasture (GRC), or housed indoors and offered total mixed ration (TMR). Mozzarella cheese was manufactured on 3 separate occasions in ML and 4 in LL in 2016. Feeding system had significant effects on milk composition, cheese yield, the elemental composition of cheese, cheese color (green to red and blue to yellow color coordinates), the extent of flow on heating, and the fluidity of the melted cheese. Compared with TMR milk, GRO and GRC milks had higher concentrations of protein and casein and lower concentrations of I, Cu, and Se, higher cheese-yielding capacity, and produced cheese with lower concentrations of the trace elements I, Cu, and Se and higher yellowness value. Cheese from GRO milk had higher heat-induced flow and fluidity than cheese from TMR milk. These effects were observed over the entire lactation period (ML + LL), but varied somewhat in ML and LL. Feeding system had little, or no, effect on gross composition of the cheese, the proportions of milk protein or fat lost to cheese whey, the texture of the unheated cheese, or the energy required to extend the molten cheese. The differences in color and melt characteristics of cheeses obtained from milks with the different feeding systems may provide a basis for creating points of differentiation suited to different markets.  相似文献   

19.
Thirty-one 3.6-kg blocks of Ragusano cheese were made on each of 6 different days (in different weeks) starting with a different batch of milk on each day. On d 1, 3, and 5, the cheeses were not presalted and on d 2, 4, and 6, all cheeses were presalted (PS). One of the 31 blocks of cheese was selected at random for analysis before brine salting (i.e., on d 0). The remaining 30 blocks were randomly divided into 2 groups of 15 blocks each; one group was placed in 18% brine (18%B) and the other group was placed in saturated brine (SB). For the 15 blocks within each of the 2 brine concentrations (BC), 5 blocks were placed in a brine tank at 12° C, 5 at 15° C, and 5 at 18° C, and submerged for 24 d. The research objective was to determine the combined impacts (i.e., interactions) of PS the curd before stretching, BC (SB vs. 18%B), and brine temperature (BT; 12, 15, and 18° C) on salt uptake, moisture content, and yield of Ragusano cheese. Although BC, BT, and PS each had their own separate impacts on salt uptake, there was little interaction of these effects on salt uptake when they were used in combination. The PS most quickly delivered salt to the interior of the cheese and was the most effective approach to salting for controlling early gas formation. There were strong separate impacts of BC, BT, and PS on cheese moisture content, moisture loss, and net weight loss, with BC having the largest separate impact on these parameters. Reducing BT reduced salt content and increased moisture, but the effects were small. The more important effect of reduced BT was to reduce growth of gas forming bacteria. The 18%B produced higher moisture, and less moisture and weight loss than SB. The effect of interactions of BC, BT, and PS on moisture loss and net weight loss were small. To achieve the maximum benefit from the various approaches to salting for controlling early gas formation in Ragusano cheese, PS combined with slightly lower BT (i.e., 15° C instead of 18° C) should be used. Although using 18%B instead of SB did increase salt uptake, the point at which improved salt uptake occurred due to use of 18%B did not provide benefit in prevention of early gas formation, as reported separately. However, use of 18%B instead of SB provided a 9.98% increase in cheese yield due to reduced moisture loss during brining; this would be very attractive to cheese makers. The increase in yield needs to be balanced against the risk of growth of undesirable bacteria in the 18%B and the creation of another cheese quality defect.  相似文献   

20.
综述了花生经过烘烤、微波、研磨花生酱以及压榨花生油等不同方式的处理后挥发性气味成分研究的进展,通过气相—质谱联用仪分析其组成,借鉴电子鼻法分析测定出上述花生制品中香气的主要成分是吡嗪类物质,为进一步建立判定方法奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号