首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a phenomenological model describing cracking under uniaxial tensile strain of a brittle thin film on a deformable substrate with an elastic-plastic interface layer. The model yields an analytical solution predicting average crack density and average crack opening as a function of applied strain and material parameters. The model has been applied to experimental data for cracks in thin SiOx films on PET substrates.  相似文献   

2.
A novel plastic substrate for flexible displays was developed. The substrate consisted of a polycarbonate (PC) base film coated with a gas barrier layer and a transparent conductive thin film. PC with ultra-low intrinsic birefringence and high temperature dimensional stability was developed for the base film. The retardation of the PC base film was less than 1 nm at a wavelength of 550 nm (film thickness, 120 µm). Even at 180 °C, the elastic modulus was 2 GPa, and thermal shrinkage was less than 0.01%. The surface roughness of the PC base film was less than 0.5 nm. A silicon oxide (SiOx) gas barrier layer was deposited on the PC base film by a roll-to-roll DC magnetron reactive sputtering method. The water vapor transmission rate of the SiOx film was less than 0.05 g/m2/day at 40 °C and 100% relative humidity (RH), and the permeation of oxygen was less than 0.5 cc/m2 day atm at 40 °C and 90% RH. As the transparent conductive thin film, amorphous indium zinc oxide was deposited on the SiOx by sputtering. The transmittance was 87% and the resistivity was 3.5 × 10− 4 ohm cm.  相似文献   

3.
K. Lau  J. Weber  H. Bartzsch  P. Frach 《Thin solid films》2009,517(10):3110-3114
Amorphous SiO2, Si3N4 and SiOxNy single layers have been deposited on silicon, glass and glycol modified polyethylene terephthalate substrates by reactive pulse magnetron sputtering. Apart from the expected correlation between refractive index, coating density and nitrogen content in the reactive gas mixture further results have been found regarding mechanical stress and the humidity barrier property of these thin films. The lowest compressive stress was observed in the coatings deposited with nitrogen contents of around 30% to 50% in the reactive gas mixture. The humidity barrier effect of the thin films already begins to increase significantly at low nitrogen contents of below 20% in the reactive gas. Additional investigations regarding chemical composition, coating adhesion and environmental stability complement this work with the main focus on optimizing these materials for optical multilayer systems on polymer substrates.  相似文献   

4.
Silicon nitride (SiNx) and silicon oxynitride (SiOxNy) films have been formed by catalytic chemical vapor deposition (Cat-CVD) method using hexamethyldisilazane (HMDS). Addition of NH3 gas and increase in gas pressure can prevent carbonization of tungsten (W) catalyzer. These SiOxNy films have high gas barrier ability compare to the case of SiOxNy films using SiH4 and thus are expected for novel sealing films.  相似文献   

5.
The damage imposed on SiO x deposited nylon 6 films as a result of abrasion with a cotton cloth and Gelboflex testing was examined by evaluating the rate at which copper plates, which were enveloped by the damaged films, were corroded by H2S. Abrasion with a cotton cloth caused some micro-cracking of the SiO x layer and the permeation rate of H2S approached that of the uncoated nylon 6 film. Damage to the SiO x layer by twisting and crushing progressed gradually with the number of Gelboflex test cycles and correspondingly the corrosion rate of the copper plates increased. Comparison of the corrosion rates of the copper plates kept in the pouches made of various commercial films with those obtained for the damaged SiO x deposited nylon 6 films showed a clear relationship between the H2 permeation rate of the films and the corrosion rate of the copper plates by H2S.  相似文献   

6.
Aluminum nitride (AlN) films were grown using metal organic vapor phase epitaxy techniques on Si (111) substrates patterned with silicon oxide (SiOx) stripes and the vibrational properties of these films were investigated by Fourier transform infrared (FTIR) techniques. The grown films contained a predominantly wurtzite AlN phase. The AlN film on SiOx was prone to corrosion when subjected to wet etching in buffered hydrofluoric acid solution thereby changing the material properties of the AlN film on SiOx. The change in the material properties of the AlN films on SiOx can be gauged from the decrease in the relative integrated areas under the A1 (TO) and E1 (TO) modes of the AlN film. The analysis shows that FTIR is a viable tool for investigating the material properties of AlN thin film structures with lateral dimensions as low as 100 μm.  相似文献   

7.
The material usage in the packaging market of Germany has decreased over the last few years. This trend results from the substitution of heavy packages with light‐weight, flexible materials. In this context, aluminium foil‐based multilayer films have been partly replaced by metallized laminates in food packaging technology. Other coating materials, such as Al2O3 or SiOx, are used where transparent films are desired. The disadvantage of these vacuum‐coated layers is the existence of pinholes which allow diffusion processes, in contrast to aluminium foil‐based multilayer films. In this study the barrier behaviour of vacuum coated laminate films was predicted by numerical simulation. The results are presented in terms of dimensionless parameters so that they may be transferred to analogous problems. This model provides a method to calculate the oxygen permeation through coated laminates. However, it is invalid for condensable gases such as water vapour. The simulation is suited for characterizing the influence of the compound structure on the barrier properties of vacuum coated laminate films. The results are verified by comparing the calculated with measured values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Effective top-side thin film encapsulation for organic light-emitting devices (OLEDs) was achieved by deposition of a multi-layer water diffusion barrier stack to protect the device against moisture permeation. The barrier stack was formed by alternative depositions of co-oxide and fluorocarbon (CFx) films. The co-oxide layer was fabricated by magnetron co-sputtering of silicon dioxide (SiO2) and aluminum oxide (Al2O3). While the CFx layer was formed by plasma enhanced chemical vapor deposition. The water vapor transmission rate of the optimized diffusion barrier stack can be down to 10− 6 g/m2/day. The OLEDs encapsulated with the multilayer stack have been shown to have operation lifetime of over 18,000 h which is nearly the same as devices with conventional glass-cover encapsulation.  相似文献   

9.
Organosilicon film and SiOx-like film are deposited on titanium alloy (Ti6Al4V) surfaces by atmospheric pressure (~ 105 Pa) dielectric barrier discharge to improve its corrosion resistance in Hanks solution. Hexamethyldisiloxane (HMDSO) is used to be the chemical precursor. The organosilicon film deposited in Ar/HMDSO system has high growth rate (75 nm/min) and low surface roughness (3 nm), while the SiOx-like film deposited in Ar/O2/HMDSO system has lower growth rate (35 nm/min) and slightly higher surface roughness (9 nm). The potentiodynamic polarization tests show that both the two siloxane films coated Ti6Al4V samples have more positive corrosion potential and one order of magnitude lower corrosion current density than the substrate, indicating the corrosion resistance of Ti6Al4V can be improved by depositing siloxane film on its surface. In particular, as the surface is more compact and cross-linked, the SiOx-like film has better corrosion resistance than the organosilicon film.  相似文献   

10.
A barrier structure consisting of SiOx and SiNx films was deposited on the polymer substrate at 80 °C via plasma-enhanced chemical vapor deposition (PECVD). However, the low radius of curvature (Rc) of the barrier-coated substrate may cause the inconvenience of the following fabrication processes. By depositing a 150 nm-SiNx film, the Rc of the barrier-coated polycarbonate (PC) substrate can increase from 80 to 115 mm without inducing any cracks in the barrier structure. Furthermore, the thermal stress of the barrier structure can be adjusted via extending the PECVD process duration in the chamber and replacing PC by the polyethersulone (PES) substrate. The Rc can increase to ∼356 mm by depositing the 150 nm-SiNx film on the other side of the PES substrate. Finally, the calcium test result of the barrier films/PES/SiNx sample was calculated to be around 3.05 × 10−6 g/m2/day, representing that the barrier structure did not fail after modification.  相似文献   

11.
Yohei Ogawa 《Thin solid films》2008,516(5):611-614
Silicon oxynitride (SiOxNy) films have been formed by adding proper amount of oxygen gas to usual forming condition of silicon nitride (SiNx) films in catalytic chemical vapor deposition (Cat-CVD) method. The composition and refractive index of the film can be systematically controlled by changing oxygen flow rate. Organic light-emitting diodes (OLEDs) covered with SiNx/SiOxNy stacked films have been completely protected from damage due to oxygen and moisture and their initial emission intensity is maintained over 1000 hours under 60 °C and 90% RH, which is equivalent to 50 000 hours in normal temperature and humidity conditions.  相似文献   

12.
Si-rich oxide films (SiOx, 0 < x < 2) were synthesized by reactive magnetron sputtering of a single Si target in a gas mixture of argon and oxygen. Intense visible electroluminescence was observed from the as-deposited SiOx film. The microstructure of the as-sputtered SiOx films was characterized by Raman and X-ray photoelectron spectroscopy techniques. Nanoscale amorphous Si clusters formed in the as-sputtered films. The electroluminescence was attributed to the oxygen-deficient defect luminescent centres and the formation of the amorphous Si nanoclusters.  相似文献   

13.
Stainless steel foils on which flexible display devices and integrated solar modules are prepared need to be coated by barrier layers for electrical insulation. In this study, SiOx barrier layer was prepared on steel foils (SUS 304) by ion beam assisted deposition, Sol-gel deposition and plasma enhanced chemical vapor deposition, respectively. The electrical properties of the SiOx films, such as resistance, reactance, leakage current density, breakdown field strength and performance index were investigated, and the bending properties were evaluated by bending tests. The best electrical insulation and bending properties of barrier could be achieved with 4 μm thick SiOx layer prepared by plasma enhanced chemical vapor deposition.  相似文献   

14.
In this work, indium zinc oxide (IZO) films have been deposited on a polyethylene terephthalate substrate coated with an SiOx film. Based on a comparative investigation of an IZO monolayer and an IZO/SiOx multilayer, it is shown that oxygen has a great effect on the electrical properties of the thin films. A mechanism is described to explain the influence of the introduced SiOx buffer layer. It is considered that an interfacial layer has come into being at the interface between the SiOx layer and IZO layer, and the properties of this layer have been evaluated. Moreover, the electrical properties of the IZO/SiOx multilayer have been successfully improved by controlling the oxygen content of the interfacial layer.  相似文献   

15.
Mechanical flexing of plastic substrates coated with thin film permeation barriers causes stress-induced cracks that may lead to device degradation. This phenomenon is of particular importance for organic light emitting diodes, an emerging display technology that can be implemented on flexible substrates but imposes stringent requirements on the barrier performance. We demonstrate a dry-etch-based method to highlight cracks in thin films of transparent materials and make them visible under a conventional optical microscope on samples in a neutral, relaxed position. This approach allows for rapid evaluation of the mechanical performance of thin film barriers on flexible substrates.  相似文献   

16.
In this paper, the electrical, structural and optical properties of indium tin oxide (ITO) films deposited on soda lime glass (SLG) haven been investigated, along with high strain point glass (HSPG) substrate, through radio frequency magnetron sputtering using a ceramic target (In2O3:SnO2, 90:10 wt.%). The ITO films deposited on the SLG show a high electrical resistivity and structural defects compared with those deposited on HSPG due to the Na ions from the SLG diffusing to the ITO film by annealing. However, these properties can be improved by intercalating a barrier layer of SiO2 or Al2O3 between the ITO film and the SLG substrate. SIMS analysis has confirmed that the barrier layer inhibits the Na ion's diffusion from the SLG. In particular, the ITO films deposited on the Al2O3 barrier layer, show better properties than those deposited on the SiO2 barrier layer.  相似文献   

17.
Ion beam deposited hydrogenated undoped as well as SiOx (SiOx + N2, SiOx + Ar) doped DLC thin films were deposited and evaluated as possible anti-adhesive layers for nanoimprint lithography. Film surface contact angle with water was investigated as a measure of the surface free energy and anti-sticking properties. Contact angle of the DLC films was independent of SiOx doping and ion beam energy. Air-annealing resistance in terms of the contact angle with water of the synthesized diamond like carbon films was investigated. Optical transmittance spectra of the DLC films in UV-VIS range were measured to investigate it as possible anti-sticking layers for UV imprint lithography applications. DLC films with the most promising combination of the UV absorption and anti-sticking properties were revealed. Preliminary imprint tests with uncoated and thin DLC film coated hot imprint stamps were performed.  相似文献   

18.
《Thin solid films》1987,149(1):85-94
The plasma deposition conditions required to produce near-stoichiometric SiO2 films with excellent stability against humidity and annealing were clarified. The film stability was evaluated by means of internal film stress and IR measurements. Films deposited at low N2O-to-SiH4 ratios typically exhibit compressive stress on silicon substrates. The compressive stress increased within a few days on exposure of the films to an ambient environment. The change in stress was accelerated when the films were subjected to an 83% humidity test at 80 °C but was prevented in vacuum. The change in the IR absorption signal corresponding to H2O was consistent with the stress change. These results suggest that the stress change is caused by water permeation into the film. The stress instability against humidity was drasttically improved by increasing the N2O-to-SiH4 ratio. At an N2O-to-SiH4 ratio of 100, films stable against the humidity test were obtained. The film quality, determined from the p etch rate, was found to be further improved by increasing the power density and by decreasing the chamber pressure. Spectra obtained using electron spectroscopy for chemical analysis revealed that the films stable against humidity were near-stoichiometric SiO2.  相似文献   

19.
Y.S. Kim  J.T. Lim  G.Y. Yeom 《Thin solid films》2009,517(14):4065-3864
SiO2-like thin films were deposited at a low temperature (< 50 °C) by a remote-type, atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) using a pin-to-plate-type, dielectric barrier discharge with gas mixtures containing hexamethyldisilazane (HMDS)/O2/He/Ar. The film characteristics were investigated according to the HMDS and O2 flow rates. To obtain a more SiO2-like thin film, an adequate combination of HMDS and oxygen flow rates was required to remove the -(CH3)x bonding in the HMDS and to oxidize the Si in HMDS effectively. At the optimized flow rates, the surface roughness of the SiO2-like thin film was also the lowest. By using HMDS (50 sccm) and O2 (500 sccm) flow rates in the gas mixture of HMDS/O2/He (2 slm)/Ar (600 sccm), SiO2-like thin films with a low impurity (< 6.35% C) were obtained at a deposition rate of approximately 10.7 nm/min.  相似文献   

20.
A stainless-steel foil is an attractive candidate for the substrate of flexible display devices and integrated solar modules. For electrical insulation and ion diffusion reduction, a barrier layer should be coated on the stainless-steel foil surface. In this study, different barrier layers such as SiOx, TaOx, TiOx and TaOx/SiOx were prepared on the flexible stainless-steel foils (SUS 304) by ion-beam assisted deposition. The dielectric properties of the barrier layers, including resistance, reactance, leakage current density, breakdown field strength and performance index, were investigated. The resistance to fatigue failure of the barrier layers was evaluated by insulating tests after the specimen foils were flattened. The results show that the dielectric properties and the resistance to fatigue failure of the TaOx/SiOx composite barrier layer are better than those of the SiOx or the TaOx barrier layer. The best dielectric properties and resistance to fatigue failure are achieved with the 4-μm thick TaOx/SiOx composite barrier layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号