首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simplified model is developed to estimate the seismic response of high‐rise buildings equipped with hysteresis damped outriggers. In the simplified model, the core tube is considered as a cantilever beam, and the effects of outriggers on the core tube are considered as concentrated moments. Modal decomposition method is adopted to obtain the seismic response of the simplified model. To investigate the accuracy and effectiveness of the simplified model, a high‐rise building with a height of 160 m was adopted as the example structure, and its response subjected to a ground motion was analyzed using the simplified model. A corresponding finite element model was built and analyzed by a finite element program called SAP2000 (Computers and Structures, Inc. Berkeley, California, United States). The analysis results obtained from the two models were compared. To consider the randomness of the ground motion, comparisons between the two models were further conducted using another 22 ground motions. It is found that the analysis results obtained from the simplified model agree well with those obtained from the finite element model, and the computation time used for the simplified model is almost negligible compared to that used for the finite element model. Such observations demonstrate that the simplified model is accurate and effective. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The seismic design of optimal damped outrigger structures relies on the assumption that most of the input energy will be absorbed by the dampers, whilst the rest of the structure remains elastic. When subjected to strong earthquakes, nevertheless, the building structure may exhibit plastic hinges before the dampers begin to work. In order to determine to which extent the use of viscously damped outriggers would avoid damage, both the host structure's hysteretic behaviour and the dampers' performance need to be evaluated in parallel. This article provides a parametric study on the factors that influence the distribution of seismic energy in tall buildings equipped with damped outriggers: First, the influence of outrigger's location, damping coefficients, and rigidity ratios core‐to‐outrigger and core‐to‐column in the seismic performance of a 60‐story building with conventional and with damped outriggers is studied. In parallel, nonlinear behaviour of the outrigger with and without viscous dampers is examined under small, moderate, strong, and severe long‐period earthquakes to assess the hysteretic energy distribution through the core and outriggers. The results show that, as the ground motion becomes stronger, viscous dampers effectively reduce the potential of damage in the structure if compared to conventional outriggers. However, the use of dampers cannot entirely prevent damage under critical excitations.  相似文献   

3.
The use of a single set of outriggers equipped with oil viscous dampers increases the damping ratio of tall buildings in about 6–10%, depending on the loading conditions. However, could this ratio be further increased by the addition of another set of outriggers? Should this additional set include dampers too? To answer these questions, several double damped outrigger configurations for tall buildings are investigated and compared with an optimally designed single damped outrigger, located at elevation 0.7 of the total building's height (h). Using free vibration, double outrigger configurations increasing damping up to a ratio equal to the single‐based optimal are identified. Next, selected configurations are subjected to several levels of eight ground motions to compare their capability for avoiding damage under critical excitations. Last, a simplified economic analysis highlights the advantages of each optimal configuration in terms of cost savings. The results show that, within the boundaries of this study, combining a damped outrigger at 0.5h with a conventional outrigger at 0.7h is more effective in reducing hysteretic energy ratios and economically viable if compared with a single damped outrigger solution. Moreover, double damped outrigger configurations for tall buildings exhibit broader display of optimal combinations, which offer flexibility of design to the high‐rise architecture.  相似文献   

4.
This paper introduces a seismic energy dissipation technology—viscous damping outrigger (VDO)—which is composed of outrigger truss and viscous damper. The viscous damper is set up vertically at the end of outrigger truss, which is an innovative and high‐efficiency arrangement. VDO can fully utilize the characteristic of structural lateral deformation of super high‐rise buildings to increase the efficiency of viscous dampers for enhancing structural security, improving seismic performance, and reducing construction expenditure. In this paper, working principle and seismic energy dissipating mechanism of VDO are explained firstly. Then, the influence of viscous damper parameters on energy dissipation efficiency is studied. Next, the optimal position of VDO in a super high‐rise building is analyzed in detail. Lastly, the application of VDO in structural seismic design of a super high‐rise building in China will be clearly verified based on their feasibility, economy, and safety.  相似文献   

5.
The Tall Building Initiative project of Pacific Earthquake Engineering Research Center has been expanded to investigate the seismic performance and possible retrofit of existing tall buildings. A candidate 35‐story steel building with representative details from the early 1970s was analyzed following several guidelines, which revealed a wide range of potential inadequacies. Thus, a two‐level retrofit approach was examined that focused on achieving the collapse prevention limit state under the major basic safety earthquake (BSE‐2E) hazard level prescribed by ASCE 41. This paper focused on a Level‐2 retrofit that used fluid viscous dampers to augment Level‐1 retrofits. For this approach, feasible damper locations and overall effective damping ratios were first evaluated through a series of preliminary studies, and then a two‐phase design method was used to refine the distribution and mechanical properties of the dampers. Thorough assessments of the refined design were carried out following several design guidelines, including ASCE 41, FEMA 351, and FEMA P‐58. The results indicated that the proposed retrofit method of using fluid viscous dampers could achieve the retrofit goal and provide a cost‐effective means of improving the structural behavior and reducing economic losses in a major seismic event.  相似文献   

6.
This paper presents a general solution for performance evaluation of a tall building with multiple damped and undamped outriggers. First, general rotational stiffness (GRS) is proposed to model an outrigger that consists of the stiffness of perimeter columns and an outrigger connection and the damping of dampers in an outrigger. By utilizing the dynamic stiffness method, the GRS can be represented by complex stiffness in an outrigger element. To analyze the dynamic characteristics of a tall building with multiple outriggers, a dynamic transcendental equation is obtained from the combination of the GRS and dynamic stiffness method. The structural responses can be calculated through the Fourier transform based on this equation. Moreover, the GRS can also be blended into a finite element (FE) model to generate an augmented state‐space equation for the analysis of the dynamic characteristics and structural responses. Applications to various outriggers are illustrated. In the numerical analysis, good agreements are found between the GRS and the FE that validates the proposed method, and the performances of various outrigger systems are evaluated parametrically. As the results of a tall building with multiple damped or undamped outriggers, the proposed method is capable of providing an optimally parametric design with respect to the position of outriggers, damping, and core‐to‐column and core‐to‐outrigger stiffness ratio. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A novel viscous damped system and its principles are proposed in the paper. It is a novel viscous damped system with multilever mechanism that can improve the energy dissipation capacity of conventional viscous dampers. In order to compare the damping effects of the novel viscous damper with that of the conventional viscous damper, a shaking table test of a three‐story steel frame structure is performed. Testing results indicate that the novel viscous damped system is more efficient. The elastic time‐history analysis of a super high‐rise frame‐core tube structure is studied under the frequently occurring earthquake. Dynamic loads take two groups of ground motions with different period characteristics into account. Main response values such as base shear, interstory drift, and acceleration factor under long‐period ground motions are apparently larger than the seismic results due to standard ground motions. Responses between the undamped structure and the damped structure with conventional viscous dampers or the latest products are compared. It is concluded that the proposed viscous damped system can perform more effectively in reducing high‐rise structural responses subject to long‐period ground motions.  相似文献   

8.
本研究通过对某超高层结构模型进行模拟地震振动台试验,考察核心筒、外围框架与伸臂结构组成的抗侧力体系在地震作用下的整体抗倾覆性能,重点分析在伸臂结构设置黏滞阻尼器的消能减震策略对结构底部弯矩的控制效果,为该类超高层结构体系减震研究提供参考。  相似文献   

9.
10.
设置黏滞阻尼器的悬挂减振结构振动台试验研究   总被引:1,自引:0,他引:1  
通过对设置黏滞流体阻尼器的悬挂结构进行地震模拟振动台试验,分析了主结构与悬挂楼面的质量比、连接方式以及阻尼器分布对悬挂结构模型的频率、阻尼比和结构响应的影响。试验结果表明:与刚性杆连接的常规悬挂结构相比,采用阻尼器连接主结构和悬挂楼面,可改变结构频率,提高结构振型阻尼比,且模型前3阶振型主要表现为悬挂楼面剪切变形;悬挂减振结构主结构的位移峰值响应小于常规悬挂结构,略小于无连接的自由悬挂结构;当悬挂楼段质量较大时,减振效果更好;与自由悬挂结构相比,阻尼器连接的悬挂减振结构能较好地抑制悬挂楼面相对于主结构的位移和悬挂楼面的层间位移;当悬挂楼面侧向刚度较小时,阻尼器均匀布置比集中布置能更好地控制悬挂楼面的相对位移。  相似文献   

11.
Outriggers are usually added in structural systems of tall buildings to collaborate central shear walls with peripheral columns. With outriggers, the structural overturning moment can be balanced, and the inter‐story drift can be controlled under horizontal loads. Therefore, the optimal location of outriggers plays a very important role in controlling the behavior of the whole building. Existing research has focused on the optimal position of outriggers on the base of the structural roof deflection. In the engineering practice, however, inter‐story drift is the most important target to control the design of tall building structures. This paper investigates the theoretical method of inter‐story drift‐based optimal location of outriggers. A Matlab program is written to perform the parameter analysis of optimal location of outriggers. Take a 240‐m tall building for a target building, the optimal location of one to three sets of outriggers under wind and earthquakes is obtained and can be utilized for the structural preliminary design of tall buildings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Tall buildings suffer from low inherent damping and high flexibility. Therefore, a core-outrigger system is often used to stiffen such buildings. A modified form, known as the damped outrigger system, wherein vertically oriented dampers are installed between outriggers and perimeter columns, has been recently developed to supplement the damping. This paper studies the efficacy of a viscously damped outrigger system through dynamic analysis of a 60-story tall building subjected to nonconcurrent earthquake and wind excitations. Two ground motion sets (100 accelerograms) are used for the former and wind tunnel test data for the latter. Effects of three building parameters, namely, (i) the core-to-column stiffness ratio, (ii) the outrigger location, and (iii) the damper size, on the dynamic characteristics and seismic and wind responses are evaluated. Effects of damper nonlinearity on seismic and wind responses are also investigated considering energy-equivalent nonlinear viscous dampers. Finally, the optimum values of these parameters are determined. For example, the optimum outrigger location is found to be between 0 . 6 H to 0 . 9 H, where H is the height of the building. The results also show that the damped outrigger system significantly outperforms the conventional one for seismic excitation, and it is very effective in reducing the wind-induced floor accelerations, provided the parameters are chosen appropriately.  相似文献   

13.
在框架-核心筒结构体系中,加强层可显著提高结构抗侧刚度、减小结构侧移,但会带来结构刚度、内力突变等不利影响。以某超高层建筑为工程背景,研究了黏滞阻尼器在伸臂桁架体系中的应用及在多遇地震和罕遇地震作用下的减震效果,研究了设置黏滞阻尼器的环带桁架在超高层建筑中的较优位置和减震效率。结果表明:黏滞阻尼器在伸臂桁架结构中的设置可以减小核心筒剪力墙的塑性损伤,减小结构的动力响应;设置黏滞阻尼器的环带桁架宜布置在层间相对速度大的位置,随超高层结构高度增加,阻尼器的减震效率降低。通过对伸臂桁架与外框柱、核心筒连接节点的设计及构造的分析,提出了连接节点的设计建议。  相似文献   

14.
粘滞流体阻尼墙在高层结构减震中的研究与应用   总被引:1,自引:0,他引:1       下载免费PDF全文
在对粘滞流体阻尼墙力学特性及计算模型分析的基础上,研究其在高层建筑减震设计中的一些关键问题。以高烈度区江苏省宿迁市的一栋94.95m高的双塔建筑为工程背景,提出了阻尼墙减震体系的设防目标,并给出了减震分析的详细流程及阻尼墙的基本布置原则。通过对减震体系的非线性地震响应分析,优化了阻尼墙的初始布置方案,并在优化方案的基础上详细分析了减震体系的地震作用剪力、位移、能量耗散、加速度响应、附加阻尼比及构件进入塑性的先后顺序等问题,最后对减震体系的经济性进行了对比分析。分析表明:阻尼墙对高层建筑的抗震性能有很大的改善,相同数量阻尼墙的情况下,合理的配置方案能够提供更多的附加阻尼。研究为阻尼墙在高层建筑的减震设计中的应用提供了成功的工程案例,其设计思路可以为高层结构的减震提供有益的借鉴和参考。  相似文献   

15.
The damped outrigger system emerged as an improvement of the conventional outriggers with the aim to provide supplemental damping and to contribute to the vibration control in super tall buildings where this system is usually applied. In addition to viscous dampers (VDs), buckling‐restrained braces (BRBs) have also been employed as energy dissipating members in outriggers. Nevertheless, the combined use of outriggers with VDs and BRBs in the same structure has not yet been studied. Such combination can contribute to achieve an effective multiperformance design of super tall buildings. This paper presents a study whose main objective was to determine the optimal vertical combination of two types of energy dissipation outriggers to control the seismic responses of a 9‐zone super tall model structure. Outriggers with VDs (OVDs) and outriggers with BRBs (OBRBs) were placed at the different zones of the structure considering all the possible combinations and in configurations of up to four outriggers. The effects of these combinations on the seismic performance of the structure were studied through parametric analysis and optimization methods. This form of the outrigger system is defined in this paper as combined energy dissipation outrigger system. The results indicate that when two energy dissipation outriggers are used, the combination of OBRB plus OVD shows superior seismic performance compared with other double‐outrigger configurations. In addition, the results show that the locations of OVDs and OBRBs play an important role in the structure behavior; it was found that it is more beneficial to place OBRBs above OVDs.  相似文献   

16.
In order to analyze the dynamic mechanical properties of viscous damper on the concrete Chinese traditional style structure with dual‐lintel‐column joints under seismic excitation, we designed 3 specimens for dynamic cyclic loading, including 2 specimens with viscous damper, which called controlled structure and 1 specimen without viscous damper called noncontrolled structure. The failure process and corresponding failure mode were obtained. The failure characteristics, skeleton curves, and mechanical behavior such as the load‐displacement hysteretic loops, degradation of strength and rigidity, ductility and energy dissipation of the joints and the load‐displacement hysteretic loops of viscous damper were analyzed. Results indicate that the hysteretic curve of viscous damper on the concrete Chinese traditional style structure with dual‐lintel‐column joints and viscous damper are plumper, and the structure has good ductility and capacity of energy dissipation. In the study, the concrete Chinese traditional style structure with dual‐lintel‐column joints and viscous damper can work together in conjunction. The load‐bearing capacity of the controlled structure is significantly higher than that of the noncontrolled structure; the performance of ductility and the ability of energy dissipation are superior to those of the noncontrolled structure. All experimental results reflect that the seismic performance of the controlled structure is significantly superior to that of the noncontrolled structure.  相似文献   

17.
A structure must meet many performance requirements to survive an earthquake. For a super high‐rise structure, the dominant control performance metric is stiffness when considering earthquake resistance because the lateral displacement of the structure often does not meet the requirements of the code even if the structure meets strength requirements. For moderate and major earthquakes, stiffness and strength play a leading role jointly. Viscous damper (VD) and buckling restraint brace (BRB) are damping devices that are commonly used in modern engineering. The efficiencies of these devices are different for different situations, and combining them can yield improved structural vibration mitigation. In this study, the performances of VD and BRB are summarized. A kind of virtual VD model with an additional damping ratio is proposed on the basis of which a VD priority placement analysis method is developed, and an optimal design is proposed. A detailed analysis of various stress states of a BRB is also performed, and a BRB arrangement method based on brace stress level analysis is proposed. The two kinds of vibration damping equipment are combined in the structure, and a practical design method for a hybrid vibration damping system is proposed. The accuracy of the proposed method is verified by considering a 10‐story plane frame. Finally, a hybrid vibration mitigation design for different objective damping ratios is performed for a super tall building project, and the design results are compared. The analysis results show that a VD can effectively increase structural damping and reduce the seismic response of the structure. A BRB is used to replace supports that experience high stress and reduce their section size, thereby reducing costs. Therefore, the proposed hybrid vibration damping structure is cost effective while providing good energy dissipation and is thus promising for engineering applications.  相似文献   

18.
欧谨  王相智 《建筑结构》2012,(3):61-64,151
设计了三榀不同类型的钢框架结构模型,通过对模型的快速水平周期加载试验,进行了设置粘滞阻尼墙钢框架结构减振性能的比较和分析。对设置阻尼墙后钢框架结构的破坏形态、滞回特性、骨架曲线、阻尼力、抗剪刚度、耗能性能、等效阻尼比等进行了研究,对阻尼墙不同布置方式对上述各项性能的影响进行了分析,并对上述各项性能与加载频率、位移幅值的变化关系进行了探讨。结果表明,设置阻尼墙后,钢框架结构的耗能能力和阻尼均有显著提高,结构的抗剪刚度增加,结构的地震响应显著减小。设置阻尼墙钢框架结构的滞回特性与频率、位移幅值相关。阻尼墙不同布置方式对结构滞回特性的影响不明显。  相似文献   

19.
In this paper, the governing equations of wall‐frame structures with outriggers are formulated through the continuum approach and the whole structure is idealized as a shear–flexural cantilever with rotational springs. The effect of shear deformation and flexural deformation of the wall‐frame and outrigger trusses are considered and incorporated in the formulation of the governing equations. A displacement‐based one‐dimensional finite element model is developed to predict lateral drift of a wall‐frame with outriggers under horizontal loads. Numerical static results are obtained and compared with previously available results and the values obtained from the finite element package MIDAS. The proposed method is found to be simple and efficient, and provides reasonably accurate results in the early design stage of tall building structures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Prefabricated steel structures have certain obvious advantages, that is, rapid construction, industrial production, and environmental protection. Although prefabricated structures have been applied in a number of countries in the world, in most cases, these structures are suitable only for low‐rise buildings, and their applications in high‐rise buildings are nota\bly rare. This paper proposes a new type of prefabricated steel structure called the modular‐prefabricated high‐rise steel frame structure with diagonal braces. Based on the T30 building, which is a hotel building with 30 storeys above the ground, the mechanical properties, failure mode, failure mechanism, and elastic–plastic development laws of the structure were studied via elastic and elastic–plastic design and analyses under various load cases and combinations. The analysis of the internal force and displacement response with frequent earthquakes was performed using the response spectrum and elastic time‐history methods, and an analysis under rare earthquakes is performed via static elastic–plastic pushover analysis. This paper summarizes the elastic and elastic–plastic structural design methods and process. This study provides important references for the design of this kind of modular‐prefabricated high‐rise steel structure, and the design method has been compiled into a design specification named Technical Specifications for Prefabricated Steel Frame Structure with Diagonal Bracing Joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号