首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a direct displacement-based design (DDBD) method for seismic design of steel frames equipped with dissipative braces is proposed. Attention is focused on concentric braced steel frames with pinned beam-to-column joints in which the bracing system (with viscoelastic or elastoplastic dissipative devices) is the main seismic resistant component. The proposed design method uses an equivalent continuous model where flexural deformability and shear deformability are related respectively to columns and diagonals of the bracing system. In this way, analytical expressions of the required flexural and shear stiffness distributions are obtained. These expressions are quite simple and can be conveniently used in preliminary design of dissipative diagonal braces and columns. Examples are shown for steel frames with dissipative braces based on elastomeric dampers (viscoelastic devices) and steel frames with buckling-restrained braces (elastoplastic devices). Results of time history analyses are illustrated and discussed in order to evaluate the effectiveness of the proposed DDBD procedure.  相似文献   

2.
In this paper, the seismic behavior of dual structural systems in forms of steel moment‐resisting frames accompanied with reinforced concrete shear walls and steel moment‐resisting frames accompanied with concentrically braced frames, have been studied. The nonlinear behavior of the mentioned structural systems has been evaluated as, in earthquakes, structures usually enter into an inelastic behavior stage and, hence, the applied energy to the structures will be dissipated. As a result, some parameters such as ductility factor of structure (μ), over‐strength factor (Rs) and response modification factor (R) for the mentioned structures have been under assessment. To achieve these objectives, 30‐story buildings containing such structural systems were used to perform the pushover analyses having different load patterns. Analytical results show that the steel moment‐resisting frames accompanied with reinforced concrete shear walls system has higher ductility and response modification factor than the other one, and so, it is observed to achieve suitable seismic performance; using the first system can have more advantages than the second one. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
通过对1榀柱中内置型钢和1榀梁柱均内置型钢的预应力型钢混凝土框架的竖向反复荷载试验, 研究预应力型钢混凝土框架的破坏机制、滞回特性、延性、刚度和耗能等性能。结果表明:预应力型钢混凝土框架梁是梁铰破坏机制,极限状态时 “拱效应”提高了框架梁的承载能力;预应力型钢混凝土框架梁滞回曲线饱满,变形恢复能力小于普通预应力混凝土框架梁;预应力型钢混凝土框架梁位移延性系数均值为4.8,普通预应力混凝土框架梁的为4.18,均有较好的延性;等效黏滞阻尼系数介于0.258~0.323之间,说明2个试件破坏时截面具有良好的耗能能力;参数分析表明,试件延性系数受含钢率影响不大,随内置型钢截面高度与梁截面高度比值增大而增大。  相似文献   

4.
Using rocking wall systems is a recent technique to improve seismic behavior in reinforced concrete structures. This paper compares three 10‐story and three 20‐story reinforced concrete frames (moment‐resisting frames) with intermediate ductility, reinforced concrete frames with shear wall, and reinforced concrete frames with controlled rocking wall (RCRW) by the use of pushover analysis. At the end of the research, the wall in a 20‐story RCRW system is post‐tensioned then analyzed, and its results were compared with RCRW results. Simulation and numerical analysis were performed with OpenSees software. The results show that plastic hinge formation and inter‐story drifts are well distributed in the structure with rocking wall system in comparison with the other systems. Meanwhile, energy dissipation and displacement ductility are increased in RCRW frames. With post‐tensioning wall in RCRW, the drift ratios are more uniformed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, the progressive collapse potential of braced frames was investigated using nonlinear static and dynamic analyses. Eight different bracing types were considered and their performances were compared with those of a special moment‐resisting frame designed with the same design load. According to the pushdown analysis results, most braced frames designed per current design codes satisfied the design guidelines for progressive collapse initiated by loss of a first story interior column; however, most model structures showed brittle failure mode caused by buckling of braces and columns. Among the braced frames considered, the inverted‐V type braced frames showed superior ductile behaviour during progressive collapse. The nonlinear dynamic analysis results showed that all the braced structures remained in stable condition after sudden removal of a column, and their deflections were less than that of the moment‐resisting frame. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
During Northridge earthquake in USA in 1994, a variety of failures occurred in welded steel connections. Studying these structural failures has led to development of more reliable moment resisting connections and new ways of using braced frames as seismic load resisting systems. This article investigates through numerical simulations, the lateral capacity and seismic behavior of two of these newly-thought braced frames, zipper braced frames and suspended zipper braced frames. The overall seismic behavior of these frames is investigated through displacement-based pushover analyses considering the effect of connection elements such as gusset plate and shear tab. To study the efficiency of these two types of concentrically braced frames, a numerical investigation on their behaviors for low-, mid- and high-rise buildings was conducted. Three zipper braced frames and three suspended zipper braced frames with different number of stories have been modeled using OpenSEES software. For each simulation, frame maximum strength, maximum drift capacity, and weight are determined and compared with each other. It is concluded that connection modeling has significant effects on the lateral behavior of these frames. Furthermore, the suspended zipper braced frames show higher ductility when compared with the ductility of zipper braced frames. Finally, the suspended zipper braced frames are recommended to be used in high-rise buildings, however, for the lowand mid-rise buildings it is recommended to use zipper frames due to economic efficacy.  相似文献   

7.
New closed‐form formulae are developed for the static deflection of symmetric multi‐storey buildings braced by moment‐resisting (and/or braced) frames, (coupled) shear walls and cores. The behaviour is characterized by shear, local bending and global bending, and corresponding stiffnesses. The analysis is based on that of a single moment‐resisting framework. A closed‐form solution is presented for the lateral deflection. The procedure is then extended to a system of frameworks, (coupled) shear walls and cores by creating an equivalent column which represents the whole structure. Another closed‐form solution is presented, this time for the deflection of the whole building. The deflection is defined by three distinctive parts: the bending deflection of the building, the shear part of the deflection and interaction between the bending and shear modes. It is shown that the interaction between the bending and shear modes is always beneficial as it reduces the deflection of the structure. According to a comprehensive accuracy analysis of 270 multi‐storey building structures with both reinforced concrete and steel bracing units and covering wide ranges of stiffness, the proposed closed‐form solution for the top deflection is simple and reliable: the average error of the formula was 4%. A worked example demonstrates the ease of use of the method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Steel bracing is able to improve progressive collapse resistance of reinforced concrete (RC) frames, but the bracing design is typically based on seismic retrofitting or lateral stability. There is no approach for design of steel bracing against progressive collapse. To this end, a retrofitting approach with steel braces is proposed based on analysis of macro finite element (FE) models with fiber beam elements. The FE models were initially validated through the experimental results of a braced frame and then used to investigate the effects of pertinent parameters on the progressive collapse resistance of planar frames. The results suggest the braces should be placed at the top story. Thereafter, macro FE models are built to investigate the dynamic responses of the three‐dimensional prototype RC frames under different column removal scenarios (CRS) and show the necessity of retrofitting. Accordingly, the design approach of steel bracing is proposed with incremental dynamic analysis (IDA) and assuming independent contribution of braces and frames to resistance. Finally, the fragility analysis of the frames under a corner‐penultimate‐exterior CRS is conducted through IDA and Monte Carlo simulation, and the results confirm the validity of the proposed design approach for retrofitting RC frames.  相似文献   

9.
通过设置K型砼折曲撑以及其他型式支撑的两层框架和不设支撑的纯框架在低周反复荷载下的试验,着重研究了折曲撑框架的变形能力、延性系数、阻尼比等抗震耗能性能,以及其刚度和破坏机制。试验表明,折曲支撑是很好的消能抗侧力构件,且具有空间开敞。自重轻等特点。本文根据试验分析,提出了设计原则和建议。  相似文献   

10.
This paper proposes dry mechanical beam–column joints for fully restrained moment connections of concrete components. This novel joint can be used for reinforced concrete precast frames and steel–concrete composite precast frames. The new dry mechanical joint consists of extended steel plates with bolts designed to transfer tension and compression forces, providing fully restrained moment connections at the beam–column joint. The extended end plate with bolts introduced for column‐beam joint assembly was originally used in the steel moment frame, as introduced in AISC 358. This study developed similar but unique mechanical joint details for concrete frames in order to provide fully restrained moment connections for both steel–concrete composite precast frames and reinforced concrete precast frames. Experimental and analytical investigations were performed to verify the structural behavior of fully restrained moment connections for concrete components in order to identify the parameters that influence the structural behavior of dry mechanical moment concrete connections. These connections are expected to be used in modular offsite construction for buildings and heavy industrial plants. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
为了研究在地震作用下外挂复合墙板装配式钢结构的抗震性能,本文进行了4榀外挂复 合墙板半刚性钢管混凝土框架试件和1榀半刚性钢管混凝土框架试件的水平低周反复荷载试验。 研究参数为墙板的混凝土类型、墙连方式、斜撑设置和是否设置墙板。研究了地震作用下墙板 与框架的共同工作性能和破坏模式,分析了结构的滞回曲线、骨架曲线、强度和刚度退化规律 、耗能能力等。结合现有规范评价了结构的延性。试验结果表明,采用螺栓连接方式外挂复合 墙板的半刚性钢管混凝土框架试件具有良好的滞回性能、耗能能力和延性,可以安全可靠地确 保复合墙板与组合框架在地震作用下共同工作;位移延性系数μ=2.53~3.81,弹性极位移角 θy=(3.33~5.03)[θe],弹塑性极限位移角θf=(2.35~2.55)[θp];等效黏滞阻尼系数 ξe=0.147~0.182,能量耗散系数E=0.973~1.145;复合墙板破坏主要发生在墙板预埋件附近, 整体性能优于传统墙体。研究成果将为我国装配式钢结构设计理论与应用提供科学依据。  相似文献   

12.
This paper proposes an application of tension‐rod displacement–restraint bracing to prevent story drift amplification in tall steel moment frames. Seismic response analyses of a 20‐story bare steel frame are performed first, revealing that story drift amplification occurs in the upper and lower stories at different times. Characteristics observed for the seismic response of the bare frame suggest the efficacy of the delay action of bracing. Subsequently, seismic response analyses of the 20‐story braced frame with tension‐rod displacement–restraint bracings reveals that the increment of the column axial force by addition of bracing is reduced dramatically by the delay action of bracing. The story rotation angles within partial stories where the story drift amplification occurs in the bare frame are also reduced efficiently by the displacement–restraint bracing. The delay action of bracing influences the floor response acceleration and the residual displacement. Finally, parametric analysis results indicate an appropriate value of the story rotation angle at which the brace action starts.  相似文献   

13.
The seismic responses of existing reinforced concrete‐framed buildings that are primarily designed and detailed to resist onerous combinations of gravity and wind loads are simulated for the conditions of moderate seis micity. A procedure is established for relating the non‐seismic and seismic behaviours of structures. By using the proposed procedure, the theoretical curvature ductility demands of ordinary reinforced concrete moment‐resisting frames can be evaluated. It has been shown that shear response of the frames due to earthquakes is dominant and adopted as a basis for estimating ductility demands. It is concluded that for low‐rise ordinary moment‐resisting framed buildings in regions liable to low or moderate sesimicity, the reduction factor suggested in the 1997 UBC might not be appropriate for use in the seismic analysis of these structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
腹板摩擦式自定心预应力混凝土框架梁柱节点的理论分析   总被引:1,自引:0,他引:1  
为减少钢筋混凝土框架在地震作用下的残余变形和损伤,提出一种新型的腹板摩擦式自定心预应力混凝土梁柱节点。其中,预制的钢筋混凝土梁柱通过无黏结预应力钢绞线进行拼接。当梁端弯矩超过节点的临界张开弯矩,梁柱接触面张开;震后,接触面在预应力的作用下重新闭合。梁柱的接触部位分别预埋钢套和钢板,以避免梁柱相对转动时混凝土的压碎。在梁端钢套的腹板处设置摩擦耗能件,从而可以在梁柱相对转动时耗散地震能。介绍腹板摩擦式自定心预应力混凝土梁柱节点的基本构造和受力特点,对梁端轴力、剪力、弯矩以及梁柱接触面张开后转动刚度的表达式进行推导,建立起梁端弯矩-相对转角关系的理论分析模型,并得到节点耗能系数和等效黏滞阻尼比的计算公式。理论分析结果与试验值吻合较好,为腹板摩擦式自定心预应力混凝土框架的设计提供了依据和参考。  相似文献   

15.
A preliminary study of the ‘displacement‐based strength reduction factor’ for high‐rise steel moment‐resisting frames is presented in this paper. The base shear capacity required for a high‐rise steel building in a displacement‐based design can be estimated from the reduction of the displacement‐based elastic response. The conventional force‐based design procedure is still adopted as the initial stage of the displacement‐based design. To establish an empirical formula of the proposed displacement‐based strength reduction factor, non‐linear time‐history analyses of six moment‐resisting frames are investigated. The conventional ‘equal displacement rule’ and ‘equal energy rule’ are no longer held when the displacement limitations are considered. As a result, a modification for conventional strength reduction factors is proposed for further applications in displacement‐based design. An adjustment factor defined as ‘deformation energy ratio’, β, which is related to natural periods, is introduced. The final displacement‐based strength reduction factor is defined as a function of ductility demand, fundamental period and the deformation energy ratio. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
In the seismic design of a reinforced concrete (RC) structure, it is necessary to provide not only sufficient strength, but also adequate flexural ductility. This is particularly important to the design of RC beams cast of high‐strength concrete that is inherently more brittle. Eurocode EN1998‐1 directly specifies such minimum flexural ductility. To provide adequate flexural ductility to RC beams, Chinese code GB50011 limits the normalised depth of simplified rectangular stress block at peak resisting moment, whereas American code ACI 318–08 requires that the tension steel strain at peak resisting moment shall not be smaller than 0.004. The essential parameters identified for effective flexural ductility design of RC beams include the maximum difference of tension and compression reinforcement ratios and maximum normalised neutral axis depth at peak resisting moment, as they help to guarantee various flexural ductility requirements. Their relationship with the flexural ductility is studied using a rigorous full‐range moment–curvature analysis procedure. Empirical formulae and tables are also developed to facilitate flexural ductility design of RC beams. A comparison shows that the allowable differences of tension and compression ratios may be smaller than those specified in Eurocode 8 particularly for those cast of high‐strength concrete. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, an energy design approach is proposed within the framework of the performance‐based seismic design of steel frames. Accumulated plastic rotation is selected as a parameter to establish the performance level thresholds. The test results of steel connections are investigated to quantify the performance level thresholds. The hysteretic energy input is acquired from a previous statistical study of twelve six‐storey steel moment‐resisting frames. The seismic performance of three‐storey steel moment resisting frames using the energy approach is examined. The research concluded that the structure designed by the energy method performed better than the steel frame designed by the equivalent lateral force (ELF) of UBC‐97 in view of accumulated plastic rotation. Performance levels such as functional, life safety and collapse are discussed based on the ductility level and the performance characteristics. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
An evaluation of seismic performance was conducted for a reinforced concrete (RC) structure designed without seismic considerations. The seismic performances of many existing structures are often inadequate based on the current seismic design codes, and it is sure that this is the general tendency in most countries. Six specimens were designed and constructed to simulate RC frames built in the 1980s, before the introduction of earthquake‐resistance design provisions in South Korea. The specimens were composed of one control specimen without any retrofit and five specimens retrofitted using wire‐bracing, brick infill wall, steel bracing (X‐ and K‐type) and corner gusset plate. All retrofitted specimens show significant increase in strength and ductility. The behaviours of each specimen are compared in the view of maximum strength, maximum moment, stiffness and energy dissipation capacity. Overall, efficiency analysis was also demonstrated in this study. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
新型梁柱节点高层钢结构抗震性能研究   总被引:2,自引:2,他引:0  
结构的抗震设计一般有两类途径:主动控制和被动控制。主动控制系统复杂且成本偏高,普通的被动控制抗震结构强震后修复困难。针对上述问题,本文提出了一种新型转动摩擦耗能梁-柱节点,并基于SAP2000对采用新型梁柱耗能节点的X形支撑钢框架体系和普通X形支撑钢框架体系进行了罕遇地震作用下的时程分析,结果表明采用了该新型梁-柱耗能节点的X形支撑钢框架体系具有更好的抗震性能。  相似文献   

20.
通过一榀设置K型支撑的高强混凝土框架(UBCBF)和一榀不设支撑的高强混凝土框架(HSCMF)在低周反复荷载下的结构性能的对比试验,着重研究了高强混凝土支撑式框架的承载与变形能力、延性等抗震性能指标以及其变形刚度和破坏机制。试验结果表明,高强混凝土支撑式框架具有初始刚度大、极限承载力高,延性和耗能性能良好的特点。本文结合试验结果及其分析,给出了这种结构的抗侧力恢复力特性和抗震设计建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号