共查询到20条相似文献,搜索用时 15 毫秒
1.
针对Hopfield网络求解TSP问题时出现无效解和收敛性能差的问题,对约束条件能量函数进行改进,构造了一种求解TSP问题的遗传Hopfield神经网络算法,并与经典Hopfield神经网络求解TSP方法进行对比.实验结果表明,本文算法具有更好的整体求解性能. 相似文献
2.
Rong-Long Wang Shan-Shan Guo Kozo Okazaki 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2009,13(6):551-558
In this paper, we present a hill-jump algorithm of the Hopfield neural network for the shortest path problem in communication
networks, where the goal is to find the shortest path from a starting node to an ending node. The method is intended to provide
a near-optimum parallel algorithm for solving the shortest path problem. To do this, first the method uses the Hopfield neural
network to get a path. Because the neural network always falls into a local minimum, the found path is usually not a shortest
path. To search the shortest path, the method then helps the neural network jump from local minima of energy function by using
another neural network built from a part of energy function of the problem. The method is tested through simulating some randomly
generated communication networks, with the simulation results showing that the solution found by the proposed method is superior
to that of the best existing neural network based algorithm. 相似文献
3.
This paper presents a hybrid efficient genetic algorithm (EGA) for the stochastic competitive Hopfield (SCH) neural network, which is named SCH–EGA. This approach aims to tackle the frequency assignment problem (FAP). The objective of the FAP in satellite communication system is to minimize the co-channel interference between satellite communication systems by rearranging the frequency assignment so that they can accommodate increasing demands. Our hybrid algorithm involves a stochastic competitive Hopfield neural network (SCHNN) which manages the problem constraints, when a genetic algorithm searches for high quality solutions with the minimum possible cost. Our hybrid algorithm, reflecting a special type of algorithm hybrid thought, owns good adaptability which cannot only deal with the FAP, but also cope with other problems including the clustering, classification, and the maximum clique problem, etc. In this paper, we first propose five optimal strategies to build an efficient genetic algorithm. Then we explore three hybridizations between SCHNN and EGA to discover the best hybrid algorithm. We believe that the comparison can also be helpful for hybridizations between neural networks and other evolutionary algorithms such as the particle swarm optimization algorithm, the artificial bee colony algorithm, etc. In the experiments, our hybrid algorithm obtains better or comparable performance than other algorithms on 5 benchmark problems and 12 large problems randomly generated. Finally, we show that our hybrid algorithm can obtain good results with a small size population. 相似文献
4.
针对数据缺失条件下构建贝叶斯网络难度大的问题,研究了贝叶斯结构学习算法,提出了将条件独立性检验和评分-搜索相结合的算法.采用改进的混合算法对训练数据初始化,建立相应的初始网络,对已经拟合了训练数据信息的初始网络用遗传模拟退火算法进行训练以找到最佳的网络结构.给出了算法实施的具体步骤且通过实验验证了算法性能,并将实验结果与其他典型的算法进行比较,表明了算法具有更优的学习效果. 相似文献
5.
This paper investigates an oriented spanning tree (OST) based simulated annealing (SA) for solving the multi-criteria shortest path problem (MSPP) as well as the multi-criteria constrained shortest path problem (MCSPP), especially for those with nonlinear objectives. As a popular search algorithm, because of “search-from-a-point” searching mechanism, there have been only a few attempts in extending SA to multi-criteria optimization, particularly, for various MSPPs. In contrast with the existing evolutionary algorithms (EAs), by representing a path as an OST, the designed SA provides an entirely new searching mechanism in sense of “search from a paths set to another paths set” such that both of its local and global search capabilities are greatly improved. Because the possibility of existing a feasible path in a paths set is usually larger than that of one path being feasible, the designed SA has much predominance for solving MCSPPs. Some computational comparisons are discussed and the test results are compared with those obtained by a recent EA of which the representing approach and the ideas of evolution operators such as mutation and crossover are adopted in most of the existing EAs for the shortest path problems. The test results indicate that the new algorithm is available for both of MSPPs and MCSPPs. 相似文献
6.
针对图像特征点匹配算法的运行时间呈指数增长的问题,提出了一种新的匹配算法NHop.该算法通过加入新的网络输入输出函数、点对间差异的度量和启发式选择目标点的方式,对传统的Hopfield神经网络进行了改进.新算法不仅解决了传统Hopfield神经网络运行时间长、能量函数易陷入局部极小点的问题,而且也有效地实现了图像特征点的匹配.实验结果表明,与传统的Hopfield神经网络相比,NHop算法的匹配速度更快、准确率更高,对于图像特征点的匹配效果更好. 相似文献
7.
8.
In this paper, we consider a neural network model for solving the nonlinear complementarity problem (NCP). The neural network is derived from an equivalent unconstrained minimization reformulation of the NCP, which is based on the generalized Fischer-Burmeister function ?p(a,b)=‖(a,b)‖p-(a+b). We establish the existence and the convergence of the trajectory of the neural network, and study its Lyapunov stability, asymptotic stability as well as exponential stability. It was found that a larger p leads to a better convergence rate of the trajectory. Numerical simulations verify the obtained theoretical results. 相似文献
9.
提出了一种带有反馈输入的过程式神经元网络模型,模型为三层结构,其隐层和输出层均为过程神经元。输入层完成连续信号的输入,隐层完成输入信号的空间聚合和向输出层逐点映射,并将输出信号逐点反馈到输入层;输出层完成隐层输出信号的时、空聚合运算和系统输出。在对权函数实施正交基展开的基础上给出了该模型的学习算法。仿真实验证明了该模型的有效性和可行性。 相似文献
10.
A meta-heuristic algorithm to solve quadratic assignment formulations of cell formation problems without presetting number of cells 总被引:2,自引:0,他引:2
Adl Baykasoğlu 《Journal of Intelligent Manufacturing》2004,15(6):753-759
The purpose of cellular manufacturing (CM) is to find part-families and machine cells which form self-sufficient units of production with a certain amount of autonomy that result in easier control (Kusiak, 1987, 1990). One of the most important steps in CM is to optimally identify cells from a given part-machine incidence matrix. Several formulations of various complexities are proposed in the literature to deal with this problem. One of the mostly known formulations for CM is the quadratic assignment formulation (Kusiak and Chow, 1988). The problem with the quadratic assignment based formulation is the difficulty of its solution due to its combinatorial nature. The formulation is also known as NP-hard (Kusiak and Chow, 1988). In this paper a novel simulated annealing based meta-heuristic algorithm is developed to solve quadratic assignment formulations of the manufacturing cell formation problems. In the paper a novel solution representation scheme is developed. Using the proposed solution representation scheme, feasible neighborhoods can be generated easily. Moreover, the proposed algorithm has the ability to self determine the optimal number of cell during the search process. A test problem is solved to present working of the proposed algorithm. 相似文献
11.
In this paper, a new operator is proposed to optimize the traditional Hopfield neural network (HNN). The key idea is to incorporate the global search capability of the Estimation of Distribution Algorithms (EDAs) into the HNN, which typically has a powerful local search capability and fast operation. On account of this property of the EDA, our proposed algorithm also exhibits a powerful global search capability. In addition, the possible infeasible solutions generated during the re-sampling period of the EDA are eliminated by the HNN. Therefore, the merits of both these methods are combined in a unified framework. The proposed model is tested on a numerical example, the max-cut problem. The new and optimized model yielded a better performance than certain traditional intelligent optimization methods, such as HNN, genetic algorithm (GA). The proposed mutation Hopfield neural network (MHNN) is also used to solve a practical problem, aircraft landing scheduling (ALS). Compared with first-come-first-served sequence, MHNN sequence reduces both total landing time and total delay. 相似文献
12.
在片上网络(Network on Chip,NoC)系统中,如何完成应用特征图到结构特征图的映射是影响系统实际性能的关键步骤之一。针对NoC系统越发庞大,映射算法耗时也随之增加的问题,提出了自适应模拟退火(Self-Adaptive Simulated Annealing,SASA)的NoC映射算法。采用相对平滑方式实现温度下降过程,针对模拟退火算法易陷于局部最优的缺点,采用自适应方法改变新解生成方式,提高了算法收敛于全局最优的概率。实验结果表明,该算法与常见NoC映射算法(如基于遗传的映射算法)相比,平均性能提升了5.3%,耗时缩短了11.1%。 相似文献
13.
基于自适应模拟退火遗传算法的多杂质用水网络设计 总被引:3,自引:1,他引:3
水资源的短缺和环境污染的日益严重,对过程工业提出了减少新鲜水用量和废水排放量的要求,且通常废水中都含有多种污染物,由此本文提出了考虑回用的多杂质用水网络设计。不但建立了多杂质用水网络超结构MINLP模型,而且针对MINLP问题求解困难的现状,开发了自适应模拟退火遗传算法。实例研究结果表明该算法可以找到全局最优解且计算时间可满足要求。另外,该算法可有效避免陷入局部最优,也不要求提供初始可行解。 相似文献
14.
In this paper, we develop a curved search algorithm which uses second-order information, for the learning algorithm for a supervised neural network. With the objective of reducing the training time, we introduce a fuzzy controller for adjusting the first and second-order approximation parameters in the iterative method to further reduce the training time and to avoid the spikes in the learning curve which sometimes occurred with the fixed step length. Computational results indicate a significant reduction in training when comparing with the delta learning rule. 相似文献
15.
根据蚁群算法与模拟退火算法的特性,提出了求解旅行商问题的混合算法.由模拟退火算法生成信息素分布,然后由蚁群算法根据累计更新的信息素找出若干组解,再经过模拟退火算法在邻域内找另外一个解的操作,得到更有效的解.与模拟退火算法、标准遗传算法、蚁群算法和随机初始化的蚁群算法进行比较,4种混合算法效果都比较好,策略D的混合算法效果最好. 相似文献
16.
提出一种改进的模拟退火遗传算法来求解装卸混合车辆路径问题;通过使用模拟退火变异策略来增强遗传算法的局部搜索能力,从而改善遗传算法的早熟问题,使算法有能力避免陷入局部极值而快速收敛于全局最优解;仿真实验结果表明了所提算法求解装卸混合车辆路径问题的有效性与适用性。 相似文献
17.
免疫模拟退火算法求解TSP 总被引:2,自引:0,他引:2
文章介绍了免疫学的一些基本理论,然后在模拟退火算法及免疫算法的基础上,提出了一种新的免疫模拟退火算法求解TSP。通过对CHN144以及标准的TSPLIB中的PR1002的数据进行测试,结果表明该算法具有良好的性能。 相似文献
18.
改进的无线传感网混沌Hopfield盲检测算法 总被引:2,自引:0,他引:2
在密集部署的无线传感器网络中,相邻传感器的信号可能高度相关。在无线传感网传输模型分簇的基础上,针对Hopfield神经网络极易陷入局部最优解、收敛速度慢等缺陷,利用混沌序列的遍历性和类随机性,提出一种改进的混沌Hopfield盲检测算法解决无线传感网簇内传感器信号盲检测问题。算法的思想是:利用混沌映射产生初始发送序列,并且在算法出现早熟收敛时进行小幅度的混沌扰动,借此降低算法的误码率。仿真结果表明,改进的混沌Hopfield神经网络算法所需数据量极短,从而成功实现簇内簇首传感器信号盲检测。 相似文献
19.
为了克服传统遗传算法的早熟收敛问题,提出改进遗传算法。采用基于旅行商遍历城市顺序的染色体编码,结合随机法与贪心法生成初始种群,提高遗传效率。通过执行优先保留交叉和平移变异操作,引入局部邻域搜索,给出最优解是否满足非连通约束的判据。最后,实验结果验证了该算法的有效性。 相似文献
20.
F. Rostami 《国际计算机数学杂志》2018,95(3):528-539
Artificial neural networks afford great potential in learning and stability against small perturbations of input data. Using artificial intelligence techniques and modelling tools offers an ever-greater number of practical applications. In the present study, an iterative algorithm, which was based on the combination of a power series method and a neural network approach, was used to approximate a solution for high-order linear and ordinary differential equations. First, a suitable truncated series of the solution functions were substituted into the algorithm's equation. The problem considered here had a solution as a series expansion of an unknown function, and the proper implementation of an appropriate neural architecture led to an estimate of the unknown series coefficients. To prove the applicability of the concept, some illustrative examples were provided to demonstrate the precision and effectiveness of this method. Comparing the proposed methodology with other available traditional techniques showed that the present approach was highly accurate. 相似文献