首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amido phosphoribosyltransferase (amido PRTase) catalyses the first step of the pathway for de novo biosynthesis of purine nucleotides. The enzyme is subject to inhibition by purine nucleoside 5'-monophosphates (AMP, IMP, and GMP), by dihydrofolate polyglutamates, and by the antifolate piritrexim [Sant, M. E., Lyons, S. D., Phillips, L., & Christopherson, R. I. (1992) J. Biol. Chem. 267, 11038-11045). Using a coupled radioassay, we have determined the substrate dissociation constants as 80.4 +/- 13.2 microM for 5-phosphoribosyl 1-pyrophosphate (P-Rib-PP) and 421 +/- 193 microM for L-glutamine with P-Rib-PP bound first with positive cooperativity for interaction with a second site on the catalytically active dimer (interaction factor of 0.247 +/- 0.042). Analysis of inhibition patterns for amido PRTase shows that the antifolate piritrexim is a noncompetitive inhibitor bound with positive cooperativity at two allosteric sites of an inactive dimer with a dissociation constant of 66.0 +/- 17.8 microM for interaction with the free enzyme and an interaction factor of 0.187 +/- 0.113 with P-Rib-PP as the varied substrate. With L-glutamine as the varied substrate, a dissociation constant of 62.3 +/- 15.6 microM for interaction with the enzyme-P-Rib-PP complex and an interaction factor of 0.0958 +/- 0.0585 microM were obtained. AMP binds as a competitive inhibitor with respect to P-Rib-PP with a dissociation constant of 40.0 +/- 8.1 microM for interaction with the free enzyme and as a noncompetitive inhibitor with respect to L-glutamine with a dissociation constant of 16.4 +/- 5.2 mM for interaction with the enzyme-P-Rib-PP complex. Sucrose density gradient centrifugation of partially purified amido PRTase showed three molecular forms of the enzyme: an inactive tetramer (10.2 S) formed in the presence of AMP, an active dimer (6.7 S) formed with P-Rib-PP, and an inactive dimer (7.2 S) with piritrexim. The latter species may predominate in cells containing high levels of dihydrofolate polyglutamates.  相似文献   

2.
Although purinergic compounds are widely involved in the intra- and intercellular communication of the nervous system, little is known of their involvement in the growth and regeneration of neuronal connections. In dissociated cultures, the addition of adenosine or guanosine in the low micromolar range induced goldfish retinal ganglion cells to extend lengthy neurites and express the growth-associated protein GAP-43. These effects were highly specific and did not reflect conversion of the nucleosides to their nucleotide derivatives; pyrimidines, purine nucleotides, and membrane-permeable, nonhydrolyzable cyclic nucleotide analogs were all inactive. The activity of adenosine required its conversion to inosine, because inhibitors of adenosine deaminase rendered adenosine inactive. Exogenously applied inosine and guanosine act directly upon an intracellular target, which may coincide with a kinase described in PC12 cells. In support of this, the effects of the purine nucleosides were blocked with purine transport inhibitors and were inhibited competitively with the purine analog 6-thioguanine (6-TG). In PC12 cells, others have shown that 6-TG blocks nerve growth factor-induced neurite outgrowth and selectively inhibits the activity of protein kinase N, a partially characterized, nerve growth factor-inducible serine-threonine kinase. In both goldfish and rat retinal ganglion cells, 6-TG completely blocked outgrowth induced by other growth factors, and this inhibition was reversed with inosine. These results suggest that axon outgrowth in central nervous system neurons critically involves an intracellular purine-sensitive mechanism.  相似文献   

3.
The effect of methotrexate (MTX) on 6-mercaptopurine (6-MP) metabolism was studied in four human leukemic cell lines in vitro. CCRF-CEM, WI-L2, TBJ, and HL-60 all expressed thiopurine methyltransferase (TPMT) activity. The cells were grown in horse serum-supplemented RPMI 1640 medium to which was added 4 microM of 6-MP or 4 microM of 6-MP and 20 nM of MTX. The presence of MTX resulted in a 2.1-, 1.7-, 2.4- and 8-fold increase in the concentrations of methylmercaptopurine ribonucleotides (MMPRP) in CEM, WI-L2, TBJ, and HL-60 cells, respectively (P < 0.0008). The concentrations of 6-thioguanine nucleotides (6 TGN) increased 1.9-, 1.4-, 2.4- and 1.9-fold in the same cell lines (P < 0.02). The four cell lines differed with respect to the effect of MTX on the consumption of 6-MP from the medium; CEM consumed more 6-MP and WI-L2 less 6-MP from media containing MTX than from media containing 6-MP only (P = 0.005 and 0.02, respectively). MTX did not affect the consumption of 6-MP by TBJ cells (P = 0.17). Media in which HL-60 cells had been grown did not contain detectable amounts of 6-MP at the end of the experiment. The simultaneous increase in methylated 6-MP metabolites and 6-TGN represents a possible explanation for the synergism of MTX and 6-MP; however, the clinical importance of increased MMPRP remains to be elucidated.  相似文献   

4.
5,6,7,8-Tetrahydro-N5,N10-carbonylfolic acid (LY354899) has been demonstrated to inhibit the dehydrogenase activity of C1-tetrahydrofolate synthase. This compound was only moderately antiproliferative toward CCRF-CEM lymphocytic leukemia cells in culture, but induced apoptosis after long incubation times. Slightly greater potency was observed in CEM cells adapted to grow in low folate media. Cell cycle alterations induced by LY354899 were unique relative to antifolates that inhibit either the purine or thymidine de novo biosynthetic pathways. Based on the observed changes in DNA content, we hypothesized that inhibition of the dehydrogenase resulted in two temporally distinct events: the first was a purineless-like effect and the second was a thymineless-like effect that resulted in apoptosis. To test this hypothesis, we combined LY354899 with the purine salvage metabolite, hypoxanthine. This combination resulted in an earlier and more dramatic apoptotic response, indicating that the thymineless effect had been potentiated. Biochemical analysis of ribo- and deoxyribonucleoside triphosphates confirmed that inhibition of the dehydrogenase activity initially resulted in decreased pools of deoxypurines and deoxypyrimidines, followed 16 hr later by an increase in deoxyadenosine triphosphate (dATP) and a further decrease in deoxythymidine triphosphate (dTTP). These studies demonstrate that the inhibition of the dehydrogenase activity of C1-tetrahydrofolate synthase may represent a viable target for the development of novel antifolates. The results are discussed in terms of deoxypurine and deoxypyrimidine biosynthesis.  相似文献   

5.
We report here the cloning and sequencing of the cDNA, purification, steady state kinetic analysis, and truncation mapping studies of the human 5-aminoimidazole- 4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (AICARFT/IMPCHase). These steps of de novo purine biosynthesis, respectively. In all species of both prokaryotes and eukaryotes studied, these two activities are present on a single bifunctional polypeptide encoded on the purH gene. The human purH cDNA is 1776 base pairs in length encoding for a 591-amino acid polypeptic (Mr = 64,425). The human and avian purH cDNAs are 75 and 81% similar on the nucleotide and amino acid sequence level, respectively. The Km values for AICAR and (6R,6S)10-formyltetrahydrofolate are 16.8 microM +/- 1.5 and 60.2 microM +/- 5.0, respectively, for the cloned, purified human enzyme. A 10-amino acid sequence within the COOH-terminal portion of human AICARFT/IMPCHase has some degree of homology to a previously noted "folate binding site." Site directed mutagenesis studies indicate that this sequence plays no role in enzymatic activity. We have constructed truncation mutants which demonstrate that each of the two enzyme activities can be expressed independent of the other. IMPCHase and AICARFT activities are located within the NH2-terminal 223 and COOH-terminal 406 amino acids, respectively. The truncation mutant possessing AICARFT activity displays steady state kinetic parameters identical to those of the holoenzyme.  相似文献   

6.
7.
The design, synthesis, biochemical, and biological evaluation of a novel series of 5-thia-2,6-diamino-4(3H)-oxopyrimidine inhibitors of glycinamide ribonucleotide transformylase (GART) are described. The compounds were designed using the X-ray crystal structure of human GART. The monocyclic 5-thiapyrimidinones were synthesized by coupling an alkyl thiol with 5-bromo-2, 6-diamino-4(3H)-pyrimidinone, 20. The bicyclic compounds were prepared in both racemic and diastereomerically pure forms using two distinct synthetic routes. The compounds were found to have human GART KiS ranging from 30 microM to 2 nM. The compounds inhibited the growth of both L1210 and CCRF-CEM cells in culture with potencies down to the low nanomolar range and were found to be selective for the de novo purine biosynthesis pathway. The most potent inhibitors had 2,5-disubstituted thiophene rings attached to the glutamate moiety. Placement of a methyl substituent at the 4-position of the thiophene ring to give compounds 10, 18, and 19 resulted in inhibitors with significantly decreased mFBP affinity.  相似文献   

8.
We have employed fluorescence in situ hybridization (FISH) in combination with standard morphology (MGG/FISH) to identify the clonal involvement of different bone marrow cell lineages in 20 AML patients (14 MDS-AML, 6 de novo AML). Even though the number of cells belonging to the abnormal clone varied between individual cases, the percentage of clonal blasts was similar in MDS-AML and de novo AML patients. The erythropoietic cells appeared to be part of the abnormal clone in 13 of 14 patients with MDS-AML, but only in 1 of 6 with de novo AML. Similarly, clonal granulocytes were detected in 13 of 14 patients with MDS-AML, compared to 2 of 6 with de novo AML. Lymphocytes consistently displayed normal, diploid karyotype. The results suggest that it is possible to distinguish between MDS-AML and de novo AML by the use of MGG/FISH; in de novo AML the abnormal chromosomal clone is generally confined to the immature myeloid cells, while in MDS-AML mature granulocytes and erythroid cells are of clonal origin. It is, however, not possible to conclude that MDS-AML is a "multipotent" type of leukaemia, since it cannot be ruled out that the chromosomally aberrant erythroid cells and granulocytes represent surviving cells from the original MDS clone.  相似文献   

9.
The glyoxalase I inhibitor diester, S-p-bromobenzyl-glutathione cyclopentyl diester (BrBzGSHCp2), inhibited the growth of human leukaemia 60 (HL60) cells in vitro. The median growth inhibitory concentration GC50 value of BrBzGSHCp2 was 4.23 +/- 0.001 microM (n = 21), and the median toxic concentration TC50 value was 8.86 +/- 0.01 microM (n = 21). BrBzGSHCp2 inhibited DNA synthesis in the third hr of incubation: the median inhibitory concentration IC50 value was 6.11 +/- 0.02 microM (n = 8). Incubation of HL60 cells with 10 microM BrBzGSHCp2 delivered the diester into cells: de-esterification of the diester there in lead to formation of the S-p-bromobenzylglutathione, inhibition of glyoxalase I activity in situ, increase in the methylglyoxal concentration after 1 hr, and induction of apoptosis after 6 hr. BrBzGSHCp2 (50-200 mg/kg) also inhibited the growth of murine adenocarcinoma 15A in vivo. Glyoxalase I inhibitor diesters may, therefore, inhibit tumour growth by inducing the accumulation of methylglyoxal in tumour cells, and induction of apoptosis.  相似文献   

10.
Orotate phosphoribosyltransferase (OPRTase; EC 2.4.2.10) catalyzes phosphoribosyl group transfer between alpha-D-5-phosphoribosyl-1-pyrophosphate and orotate to form orotidine-5'-monophosphate and pyrophosphate, the nucleotide-forming step in pyrimidine biosynthesis. It is one of ten PRTases that perform vital roles in de novo and salvage pathways for purine, pyrimidine and pyridine nucleotides. Although the PRTases are important drug targets, they are poorly understood mechanistically, and no three-dimensional structures exist. Here, we report the complete sequence of the Salmonella typhimurium pyrE gene and the deduced sequence of the OPRTase gene product. OPRTase forms tetragonal crystals from polyethylene glycol solutions; these crystals diffract to better than 2 A resolution, and are stable to radiation damage. The space group is P4(1)2(1)2 (or P4(3)2(1)2) with unit cell dimensions of a = b = 48.5 A, c = 210.5 A, and alpha = beta = gamma = 90 degrees. A crystalline form of the selenomethionine derivative of the protein is also reported.  相似文献   

11.
Human glioma cell extracts were found to elicit a marked growth-promoting activity on human neuroblastoma cells. This activity was also detected in the extracts of neurofibroma type 1 (NF1; von Recklinghausen neurofibromatosis) comprising aberrant Schwann cell growth. The purified substance from the NF1 extracts by HPLC on ODS columns was identical to a pyrimidine nucleoside, uridine, the chemical structure of which was identified by gas chromatography-mass spectrometry. The authentic uridine showed a strong growth-promoting activity on human neuroblastoma cells. Other purine or pyrimidine nucleotides, their derivatives, and ribose sources for their syntheses were employed to test the activity; a purine nucleoside, adenosine, showed a stronger activity than uridine. The current study raises the possibility that human neuroblastoma cells may be affected by dysfunctions of the de novo pathway of both purine and pyrimidine nucleotide biosyntheses.  相似文献   

12.
A conventional and a computer search of the literature yielded 627 sequenced point mutations in the ras and p53 genes in 575 patients with leukaemia and myelodysplasia (MDS) out of a total of 4214 investigated. ras Mutations predominated in myeloid leukaemia and were more common in the disease in relapse than at presentation. There was no clinical, or haematological difference or difference in survival between ras positive and ras negative patients with acute myeloid leukaemia (AML) in adults or children, but ras mutations carried a poorer prognosis in childhood acute lymphocytic leukaemia and an increased risk of leukaemia in MDS. p53 mutations predominated in lymphoid leukaemia and were several fold more frequent in leukaemia in relapse than in the de novo disease, were associated with loss of the normal p53 allele (monosomy 17) in > 50% of cases and carried a poor prognosis in AML, MDS and chronic lymphatic leukaemia and a 3.8-fold increase risk of death in T cell acute lymphocytic leukaemia. There were 163 transitions for every 100 transversions, the expected number being ca 50. Consideration of the molecular mechanisms by which nitrous acid produces transitions allows transitions resulting from the deamination of cytosine to be distinguished from those resulting from the deamination of adenine. The former constitute 84.67% and the latter 15.33% of the 372 transitions present. Again purine-->pyrimidine and pyrimidine-->purine transversions form 80.35 and 19.65%, respectively, of the 228 transversions present. The possible bearing of this highly non-random distribution on the aetiology of point mutations in leukaemia and myelodysplasia is discussed.  相似文献   

13.
The prognosis of infant ALL, characterized by a high incidence of the immature CD10 negative B-lineage ALL (proB ALL) is poor. This study aimed to determine the resistance profile of infant ALL cells. In vitro drug resistance was determined by the MTT assay of 395 children with ALL at initial diagnosis: there were 21 infants <1.5 years of which nine <1 year, 284 children aged 1.5-10 years (intermediate age group) and 90 children >10 years. Immunophenotyping resulted in 310 cALL/preB ALL, 69 T-ALL, 15 proB ALL and one unknown cases. The following drugs were tested: daunorubicin, doxorubicin, mitoxantrone, idarubicin (Ida), prednisolone (Pred), dexamethasone (DXM), vincristine (VCR), Asparaginase (Asp), 6-MP, 6-TG, AraC, VM26 and 4-HOO-ifosfamide (Ifos). Infants <1.5 years were significantly more resistant to Pred (>500-fold), Asp (11-fold) and VM26 (2.7-fold) but significantly more sensitive to Ara-C (2.3-fold) compared to the intermediate age group. When analyzing infants <1 year of age similar results were found. ProB ALL cells (seven infants <1.5 years; eight children >1.5 years) were significantly more resistant to glucocorticoids, Asp, thiopurines, anthracyclines and Ifos compared to cALL/preB ALL but more sensitive to Ara-C. Cells from children >10 years were significantly more resistant to Pred, DXM, Asp, Ida and 6-MP. T-ALL cells showed a strong resistance to Pred, Asp and VCR and a mild but significant resistance to all other drugs except thiopurines and VM26. We conclude that the poor prognosis of infant ALL is associated with a resistance to glucocorticoids and Asp. However, ALL cells from infants show a relatively high sensitivity to Ara-C which suggests that infants with ALL might benefit from treatment schedules that incorporate more Ara-C than the current treatment protocols.  相似文献   

14.
Malononitrilamides (MNA 279 and MNA 715) represent a new class of low molecular weight immunosuppressants and belong to the derivatives of the primary metabolite of leflunomide A7771726. They have been shown to prevent and reverse established acute allograft rejection and effectively prolong xenograft survival, and have also been found to be potent inhibitors of B- and T-cell mediated autoimmune processes. The MNAs mediate their effects by binding specifically to dehydro orotate-dehydrogenase (DHODH) and inhibiting de novo pyrimidine biosynthesis, thereby blocking T- and B-cell proliferation and strongly suppressing the IgM and IgG antibody production. In this study we evaluated the effects of MNA 279 and MNA 715 on the in vivo lymphoproliferation that occurs after challenge with allogeneic cells in a local graft-versus-host (GvH) reaction in Lewis x Brown-Norway (LBN) F1-hybrid rats by measuring the enlargement of the PLN draining the site of allogeneic cell injection. Oral administration of one of the two MNAs (7.5 to 50 mg/kg) on day 0, dose-dependently prevented the localized lymphoproliferative response and suppressed the lymph node hyperplasia. The MNAs even acted therapeutically when they were given during an ongoing alloreactivity as late as day 4 or 5 after challenge. Consistent with the mode of action that MNAs inhibit de novo pyrimidine biosynthesis, a complete reversal of the immunosuppression on the lymphoproliferation in vivo was attempted in this protocol by addition of exogenous uridine during days 0 to 5. These data suggest that MNA 279 and MNA 715 mediate their antiproliferative and immunosuppressive effects in the PLN-assay in vivo by decreasing the activity of DHODH in the lymph node cells and thereby inhibiting pyrimidine biosynthesis.  相似文献   

15.
Salvage and de novo purine and pyrimidine nucleotide syntheses were studied in H9 (a human lymphoid cell line) and H9-AZT cells (chronically zidovudine-exposed H9 cells). H9-AZT cells incorporated 18% and 27% more hypoxanthine and uridine, respectively, than H9 cells. The incorporation of the formate and bicarbonate was similar in both cell lines. Purine and pyrimidine de novo synthesis was inhibited by hypoxanthine and uridine, respectively. Hypoxanthine and uridine salvage pathways, however, were not affected by formate or bicarbonate. Short-term AZT exposure of cells had no effect on nucleotide synthesis. Some of the problems encountered in the studies of purine and pyrimidine synthesis are also discussed.  相似文献   

16.
Saccharomyces cerevisiae possesses two cytosolic 5,10-methylenetetrahydrofolate (CH2-THF) dehydrogenases that differ in their redox cofactor specificity: an NAD-dependent dehydrogenase encoded by the MTD1 gene and an NADP-dependent activity as part of the trifunctional C1-THF synthase encoded by the ADE3 gene. The experiments described here were designed to define the metabolic roles of the NAD- and NADP-dependent CH2-THF dehydrogenases in one-carbon interconversions and de novo purine biosynthesis. Growth studies showed that the NAD-dependent CH2-THF dehydrogenase is interchangeable with the NADP-dependent CH2-THF dehydrogenase when flow of one-carbon units is in the oxidative direction but that it does not participate significantly when flux is in the reductive direction. 13C NMR experiments with [2-13C]glycine and unlabeled formate confirmed the latter conclusion. Direct measurements of cellular folate coenzyme levels revealed substantial levels of 10-formyl-THF (CHO-THF), the one-carbon donor used in purine synthesis, in the purine-requiring ade3 deletion strain. Thus, CHO-THF is necessary but not sufficient for de novo purine synthesis in yeast. Disruption of the MTD1 gene in this strain resulted in undetectable CHO-THF, indicating that the NAD-dependent CH2-THF dehydrogenase was responsible for CHO-THF production in the ade3 deletion strain. Finally, we examined the ability of wild-type and catalytically-inactive domains of the cytoplasmic C1-THF synthase to complement the adenine auxotrophy of the ade3 deletion strain. Both the dehydrogenase/cyclohydrolase (D/C) domain and the synthetase domain could functionally replace the full-length protein, but, at least for the D/C domain, complementation was not dependent on catalytic activity. These results reveal a catalytic role for the NAD-dependent CH2-THF dehydrogenase in the oxidation of cytoplasmic one-carbon units and indicate that the cytoplasmic C1-THF synthase plays both catalytic and noncatalytic roles in de novo purine biosynthesis in yeast.  相似文献   

17.
We tested the ability of human liver microsomes (HLMs) and recombinant human cytochrome P450 (CYP or P450) isoforms to catalyze the N-demethylation of nirvanol-free (S)-mephenytoin [(S)-MP] in vitro. In mixed HLMs, the kinetics of (S)-MP N-demethylation suggested two contributing activities. A high-affinity/low-capacity component exhibited a KM of 174.1 microM and a Vmax of 170.5 pmol/mg protein/min, whereas a low-affinity/high-capacity component exhibited a KM of 1911 microM and a Vmax of 3984 pmol/mg protein/min. The activity of the high-affinity component was completely abolished by sulfaphenazole, with little effect on the low-affinity component. Of the recombinant P450 isoforms tested, only CYP2B6 and CYP2C9 formed nirvanol from (S)-MP. The KM value (150 +/- 42 microM) derived for recombinant CYP2C9 was close to that obtained for the high-affinity/low-capacity component in mixed HLMs (KM = 174.1 microM). The predicted contribution of this activity at concentrations (1-25 microM) achieved after a single 100-mg dose of racemic MP is approximately 30% of the rate of nirvanol formation. At concentrations of >1000 microM, we estimate that >90% of the rate can be explained by the low-affinity activity (CYP2B6). Therefore, the N-demethylation of (S)-MP to nirvanol may be a useful means of probing the activity of CYP2B6 in vitro when concentrations of >1000 microM are used, but it is unlikely to be a suitable phenotyping tool for this isoform in vivo, where concentrations of >1000 microM are rarely encountered.  相似文献   

18.
19.
Complex U, which contains the last two enzymes (orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidylate decarboxylase (EC 4.1.23)) of the six enzymes for the de novo biosynthesis of UMP, has been purified 200-fold from mouse Ehrlich ascites cells. The specific activity of the orotate phosphoribosyltransferase and the orotidylate decarboxylase activities of the complex were 0.115 and 0.290 mumol of product/mg of protein/min; the recovery of the activities was high being 20 to 30%. The rate of the two activities remained similar to that of the homogenate. At the sixth step of the fractionation, one can obtain a fraction that has lost phosphoribosyltransferase activity but retains decarboxylase activity. The apparent molecular weights, as determined by density gradient centrifugation, of the native complex and the fraction containing only decarboxylase activity are identical, 55,700 +/- 4,000. Both activities of complex U are labile to very mild treatments such as dilution, dialysis, or storage at 3 degrees. Dithiothreitol and 5-phosphoribosyl-1-pyrophosphate (PP-Rib-P), but not orotic acid or MgCl2, can stabilize either or both of the enzyme activities. The degree of stabilization by three of these chemicals varies with the reagent(s) used, with the nature of the treatment, and with the concentration of Complex U. When PP-Rib-P, Mg2+ and dithiothreitol are present in the diluting buffer the activity losses were slowed and then followed by a partial recovery of the phosphoribosyltransferase activity. Maximum activities of both enzymes are observed by adding undiluted complex to a complete reaction mixture without preincubation. The complex cannot be exposed to pH values of 4 or below, or pH 9 or above. The stability studies have led to the development of conditions that permit one, for the first time, to subject the complex to electrophoresis and to recover a large percentage of both enzyme activities, rather than only decarboxylase activity as has occurred in the past. The electrophoretic studies indicate that PP-Rib-P produces a complex whose conformation and/or net charge differ significantly from that of the complex in the absence of PP-Rib-P. Kinetic characteristics of the transferase are a pH optimum between 6.5 and 7.5, apparent Km values for orotate, PP-Rib-P, and Mg2+ of 1.9 muM, 16 muM, and 2.9 mM, respectively; for the decarboxylase, a sharp pH optimum of 7.0 is observed, and a Km value for orotidine 5'-phosphate of 0.8 muM.  相似文献   

20.
SAMDC is a key enzyme in the biosynthesis of spermidine and spermine, 2 polyamines that are essential for cell proliferation. Inhibition of polyamine biosynthesis is often targeted as a therapeutic strategy to suppress cancer cell growth as these cells contain elevated levels of polyamines. We examined the effect of a new group of SAMDC inhibitors, CGP33829, CGP35753, CGP36958, CGP39937, and CGP48664, (obtained from Ciba-Geigy, Basel, Switzerland), and their parent compound, MGBG, on the proliferation of MCF-7 breast cancer cells. MGBG had minimal effects on the proliferation of MCF-7 cells up to 6 microM concentration. In contrast, CGP48664 and CGP39937, containing 2 aromatic rings that delocalize the pi electron system of the backbone of MGBG, were potent inhibitors with 50% growth inhibition at 0.5 microM concentration. Other CGP compounds were less effective in inhibiting cell growth. The ability of CGP48664 to inhibit MCF-7 cell proliferation was related to its ability to inhibit SAMDC and to consequently deplete spermidine and spermine levels in the cell. Exogenous spermidine and spermine could reverse the growth inhibitory effects of this compound. CGP compounds also increased the activity of ODC, another enzyme involved in polyamine biosynthesis. Northern blot analysis of mRNA from MCF-7 cells progressing in cell cycle after G1 synchronization did not show an increase in ODC mRNA level by CGP48664. These data demonstrate structure-activity relationships of a series of MGBG derivatives on cell growth, enzyme activities, and polyamine biosynthesis in a hormone-responsive breast cancer cell line and suggest potential application of SAMDC inhibitors as therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号