首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we combine priority encoding transmission (PET) with a limited retransmission (LR) capacity. We propose the resulting LR-PET scheme as a framework for efficient RD optimized delivery of streaming media. Previous work on scalable media protection with PET has largely ignored the possibility of retransmission. In the proposed LR-PET framework, an optimization algorithm determines the level of protection for each element in each transmission slot, subject to transmission bandwidth constraints. To balance the protection assigned to elements being transmitted for the first time with those being retransmitted, the proposed algorithm formulates a collection of hypotheses concerning its own behavior in future transmission slots. We show that this formulation of hypotheses is central to the success of the proposed LR-PET algorithm. Indeed, without this element, a greedy version of LR-PET performs only slightly better than PET without retransmission. Experimental results are reported using both IID and GE channel models, with a Motion JPEG2000 video source, demonstrating substantial performance benefits from the proposed framework.  相似文献   

2.
Robust streaming of video over 802.11 wireless local area networks poses many challenges, including coping with bandwidth variations, data losses, and heterogeneity of the receivers. Currently, each network layer (including physical layer, media access control (MAC), transport, and application layers) provides a separate solution to these challenges by providing its own optimized adaptation and protection mechanisms. However, this layered strategy does not always result in an optimal overall performance for the transmission of video. Moreover, certain protection strategies can be implemented simultaneously in several layers and, hence, the optimal choices from the application and complexity perspective need to be identified. In this paper, we evaluate different error control and adaptation mechanisms available in the different layers for robust transmission of video, namely MAC retransmission strategy, application-layer forward error correction, bandwidth-adaptive compression using scalable coding, and adaptive packetization strategies. Subsequently, we propose a novel adaptive cross-layer protection strategy for enhancing the robustness and efficiency of scalable video transmission by performing tradeoffs between throughput, reliability, and delay depending on the channel conditions and application requirements. The results obtained using the proposed adaptive cross-layer protection strategies show a significantly improved visual performance for the transmitted video over a variety of channel conditions.  相似文献   

3.
In this paper, we address the problem of unequal error protection (UEP) for scalable video transmission over wireless packet-erasure channel. Unequal amounts of protection are allocated to the different frames (I- or P-frame) of a group-of-pictures (GOP), and in each frame, unequal amounts of protection are allocated to the progressive bit-stream of scalable video to provide a graceful degradation of video quality as packet loss rate varies. We use a genetic algorithm (GA) to quickly get the allocation pattern, which is hard to get with other conventional methods, like hill-climbing method. Theoretical analysis and experimental results both demonstrate the advantage of the proposed algorithm.  相似文献   

4.
In many multimedia applications, coded video is transmitted over error prone heterogeneous networks. Because of the predictive mechanism used in video coding, transmission error would propagate temporally and spatially and would result in significant quality losses. In order to address this problem, different error resilience methods have been proposed. One of the techniques, which is commonly used in video streaming, is unequal error protection (UEP) of scalable video coding (SVC). In this technique, different independent layers of an SVC stream are protected differently and based on their importance by using forward error correction (FEC) codes. Accurately analyzing the importance or utility of each video part is a critical component and would lead to a better protection and higher quality of the received video. Calculation of the utility is usually based on multiple decoding of sub-bitstreams and is highly computationally complex. In this work, we propose an accurate low complexity utility estimation technique that can be used in different applications. This technique estimates the utility of each network abstraction layer (NAL) by considering the error propagation to future frames. We utilize this method in an UEP framework with the scalable extension of H.264/AVC codec and it achieves almost the same performance as highly complex estimation techniques (an average loss of 0.05 dB). Furthermore, we propose a low delay version of this technique that can be used in delay constrained application. The estimation accuracy and performance of our proposed technique are studied extensively.  相似文献   

5.
基于无线视频监控传输技术进行无线信道视频图像传输的过程中,经常面临数据传输错误、带宽变化、网络拥塞导致的视频数据丢失问题,严重影响了图像质量。Joint Video Team(JVT)of ISO/IECMPEG and ITU-T VCEG提出了可伸缩视频编码(SVC),可实现视频空间、时间和图像质量的完全伸缩,本文结合率失真优化算法将可伸缩编码作为容错工具,引入了不同层数据,根据B-D代价函数决定自动重传机制,降低了视频数据丢失对图像质量的影响。仿真结果表明,该方法大大提高了视频码流的抗误码能力和传输的鲁棒性。  相似文献   

6.
We propose an analytical rate-distortion optimized joint source and channel coding algorithm for error-resilient scalable encoded video for lossy transmission. A video is encoded into multiple independent substreams to avoid error propagation and is assigned forward error correction (FEC) codes and source bits using Lagrange optimization. Our method separates video coding and packetization into different tiers which can be easily incorporated into any coding structure that generates a set of independent compressed bit-streams. To demonstrate the performance, we use the 2-state Markov model to describe the burst loss channel and Reed-Solomon codes as forward error correction codes. Simulation results show that the proposed channel incorporated rate-distortion optimization approach have better performance.  相似文献   

7.
Transporting hybrid coded video over wireless channel is very challenging. On the one hand, wireless link is much more error prone than wired network due to time varying channel conditions such as fading and multipath interference. On the other hand, hybrid coded video is very vulnerable to error propagation when transmitted over error prone channels. Numerous researches have been conducted to enhance error robustness for wireless video transmission. Among them, many schemes use retransmission to reduce packet loss rate and improve reconstructed video quality. However, retransmission is delay constrained due to the low delay nature of real-time video. Packet loss is inevitable even when retransmission is employed. In the proposed architecture, a novel error recovery scheme is introduced which switches adaptively between ACK and NACK modes according to channel conditions. Video proxy server at the base station is designed to make the retransmission and feedback based error recovery method more effective. State-of-the-art H.264 is used as video encoder since it provides not only high coding efficiency but also multi-frame which plays a key role in the framework. Simulation results demonstrate the effectiveness of this architecture.  相似文献   

8.
Video summarization has gained increased popularity in the emerging multimedia communication applications, however, very limited work has been conducted to address the transmission problem of video summary frames. In this paper, we propose a cross-layer optimization framework for delivering video summaries over wireless networks. Within a rate-distortion theoretical framework, the source coding, allowable retransmission, and adaptive modulation and coding have been jointly optimized, which reflects the joint selection of parameters at physical, data link and application layers. The goal is to achieve the best video quality and content coverage of the received summary frames and to meet the delay constraint. The problem is solved using Lagirangian relaxation and dynamic programming. Experimental results indicate the effectiveness and efficiency of the proposed optimization framework, especially when the delay budget imposed by the upper layer applications is small, where more than 10% distortion gain can be achieved.  相似文献   

9.
高攀  彭强  王琼华 《电子学报》2012,40(12):2544-2548
 多视点视频编码(Multiview Video Coding,MVC)利用运动估计和视差估计取得了较好的编码性能,但在易错的网络环境下传输MVC视频码流,将导致差错在视点内与视点间进行扩散.针对多视点视频的编码特性,提出了一种端到端的失真度估计模型,并将此模型与率失真优化相结合得到一种基于联合信源信道的编码模式选择算法.实验结果表明该方法能够在易错网络环境下有效的提高多视点视频的传输效率.  相似文献   

10.
This paper presents a new bit-plane-wise unequal error protection algorithm for progressive bitstreams transmitted over lossy networks. The proposed algorithm protects a compressed embedded bitstream generated by a 3-D SPIHT algorithm by assigning an unequal amount of forward error correction (FEC) to each bit-plane. The proposed algorithm reduces the amount of side information needed to send the size of each code to the decoder by limiting the number of quality levels to the number of bit-planes to be sent while providing a graceful degradation of picture quality as packet losses increase. We also apply our proposed algorithm to transmission of JPEG 2000 coded images over the Internet. To get additional error-resilience at high packet loss rates, we extend our algorithm to multiple-substream unequal error protection. Simulation results show that the proposed algorithm is simple, fast and robust in hostile network conditions and, therefore, can provide reasonable picture quality for video applications under varying network conditions.  相似文献   

11.
12.
In this paper, we propose a novel cross-layer framework for jointly controlling and coding for multiple video streams in wireless multihop networks. At first, we develop a cross-layer flow control algorithm that works at the medium access control (MAC) layer to adjust each link's persistence probability and at the transport layer to adjust flow rates. This proposal is designed in a distributed manner that is amenable to online implementation for wireless networks, and then, a rate-distortion optimized joint source-channel coding (JSCC) approach for error-resilient scalable encoded video is presented, in which the video is encoded into multiple independent streams and each stream is assigned forward error correction (FEC) codes to avoid error propagation. Furthermore, we integrate the JSCC with the specific flow control algorithm, which optimally applies the appropriate channel coding rate given the constraints imposed by the transmission rate obtained from the proposed flow control algorithm and the prevailing channel condition. Simulation results demonstrate the merits and the need for joint quality of service (QoS) control in order to provide an efficient solution for video streaming over wireless multihop networks.  相似文献   

13.
There have been increasing concerns about the security issues of wireless transmission of multimedia in recent years. Wireless networks, by their natures, are more vulnerable to external intrusions than wired ones. Therefore, many applications demand authenticating the integrity of multimedia content delivered wirelessly. In this work, we propose a framework for jointly authenticating and coding multimedia to be transmitted over heterogeneous wireless networks. We firstly provide a novel graph-based authentication scheme which can not only construct the authentication graph flexibly but also trade-off well among some practical requirements such as overhead, robustness and delay. And then, a rate-distortion optimized joint source-channel coding (JSCC) approach for error-resilient scalable encoded video is presented, in which the video is encoded into multiple independent streams and each stream is assigned forward error correction (FEC) codes to avoid error propagation. Furthermore, we consider integrating authentication with the specific JSCC scheme to achieve a satisfactory authentication results and end-to-end reconstruction quality by optimally applying the appropriate authentication and coding rate. Simulation results show the effectiveness of the proposed authentication-coding scheme for multimedia over wireless networks.  相似文献   

14.
We consider efficiently transmitting video over a hybrid wireless/wire-line network by optimally allocating resources across multiple protocol layers. Specifically, we present a framework of joint source-channel coding and power adaptation, where error resilient source coding, channel coding, and transmission power adaptation are jointly designed to optimize video quality given constraints on the total transmission energy and delay for each video frame. In particular, we consider the combination of two types of channel coding—inter-packet coding (at the transport layer) to provide protection against packet dropping in the wire-line network and intra-packet coding (at the link layer) to provide protection against bit errors in the wireless link. In both cases, we allow the coding rate to be adaptive to provide unequal error protection at both the packet and frame level. In addition to both types of channel coding, we also compensate for channel errors by adapting the transmission power used to send each packet. An efficient algorithm based on Lagrangian relaxation and the method of alternating variables is proposed to solve the resulting optimization problem. Simulation results are shown to illustrate the advantages of joint optimization across multiple layers.  相似文献   

15.
We consider the joint source–channel coding problem of stereo video transmitted over AWGN and flat Rayleigh fading channels. Multiview coding (MVC) is used to encode the source, as well as a type of spatial scalable MVC. Our goal is to minimize the total number of bits, which is the sum of the number of source bits and the number of forward error correction bits, under the constraints that the quality of the left and right views must each be greater than predetermined PSNR thresholds at the receiver. We first consider symmetric coding, for which the quality thresholds are equal. Following binocular suppression theory, we also consider asymmetric coding, for which the quality thresholds are unequal. The optimization problem is solved using both equal error protection (EEP) and a proposed unequal error protection (UEP) scheme. An estimate of the expected end-to-end distortion of the two views is formulated for a packetized MVC bitstream over a noisy channel. The UEP algorithm uses these estimates for packet rate allocation. Results for various scenarios, including non-scalable/scalable MVC, symmetric/asymmetric coding, and UEP/EEP, are provided for both AWGN and flat Rayleigh fading channels. The UEP bit savings compared to EEP are given, and the performances of different scenarios are compared for a set of stereo video sequences.  相似文献   

16.
The scalable extension of the H.264/AVC video coding standard (SVC) demonstrates superb adaptability in video communications. Joint source and channel coding (JSCC) has been shown to be very effective for such scalable video consisting of parts of different significance. In this paper, a new JSCC scheme for SVC transmission over packet loss channels is proposed which performs two‐dimensional optimization on the quality layers of each frame in a rate‐distortion (R‐D) sense as well as on the temporal hierarchical structure of frames under dependency constraints. To compute the end‐to‐end R‐D points of a frame, a novel reduced trellis algorithm is developed with a significant reduction of complexity from the existing Viterbi‐based algorithm. The R‐D points of frames are sorted under the hierarchical dependency constraints and optimal JSCC solution is obtained in terms of the best R‐D performance. Experimental results show that our scheme outperforms the existing scheme of [13] with average quality gains of 0.26 dB and 0.22 dB for progressive and non‐progressive modes respectively.  相似文献   

17.
With the rapid development of network and multimedia technology, the error control in video coding and video transmission over error-prone channels has become increasingly important. The DCT based predictive coding and VLC based entropy coding greatly increase the coding efficiency, but make the compressed video stream very sensitive to transmission errors. Therefore, this paper proposes a reliable error resilient video coding and video transmission framework. In order to improve the robustness to packet loss errors, an error resilient video coding algorithm named Z-FMO is proposed. Some channel may bring random bit errors, an adaptive error concealment algorithm based on macroblock boundary gradient namely ECMBG is proposed aiming at such problem. As the indispensable part of a video transmission system, we implement an adaptive video transmission control algorithm JCBAF. Experimental results show that the proposed framework performs well both in R-D performance and subjective quality.  相似文献   

18.
王雪  钱志鸿  李冰  李悦 《通信学报》2011,32(1):151-158
为了提高蓝牙抗干扰能力与传输效率,从基带层重传和L2CAP层重传研究了蓝牙的重传机制。基带层提出了利用重传次数估计跟踪信道质量的自适应分组选择策略,根据当前信道的重传次数动态选择使其吞吐量最大的分组。在L2CAP层,针对连续重传需要传送已经准确接收的数据帧的缺点,提出了结合连续重传和流控制2种模式的选择重传算法,无需改变蓝牙协议。仿真与分析表明,算法能有效提高吞吐量与传输效率、降低时延,容易实现。  相似文献   

19.
A fast rate-optimal rate allocation algorithm is proposed for parallel transmission of scalable images in multichannel systems. Scalable images are transmitted via fixed-length packets. The proposed algorithm selects a subchannel, as well as a channel code rate for each packet, based on the signal-to-noise ratios (SNRs) of the subchannels. The resulting scheme provides unequal error protection of source bits and significant gains are obtained over equal error protection schemes. An application of the proposed algorithm to JPEG2000 transmission shows the advantages of exploiting differences in SNRs between subchannels. Multiplexing of multiple sources is also considered, and additional gains are achieved by exploiting information diversity among the sources.  相似文献   

20.
WiMedia systems are developed for indoor high-data-rate wireless systems. The H.264/AVC, a high-efficiency video coding technique, is considered for high definition (HD) video application. Considering the transmission of H.264/AVC based HD video over WiMedia, in this paper, we will propose a cross-layer architecture and an analytical model to calculate the optimal payload length with the constraints in error criteria, retransmission mechanism, and the delay budget. Besides, the required minimum reservation slots in WiMedia are also investigated to optimize the transmission performance of HD video.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号