首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface morphology of GaAs films grown on Ge substrates is studied by scanning force microscopy. We find a dramatic difference arising from Ga as opposed to As prelayers in the formation of anti-phase boundaries (APBs), surface features near threading dislocations, and surface roughness, for films as thick as 1 μm. Ga prelayer samples are smooth; thin films display some APBs with predominantly one growth domain while the 1 μm thick film displays the morphology of a homoepitaxial GaAs film. In contrast, As prelayer samples are rough with complicated APB structures, which can be attributed to the increase in single steps during As2 deposition.  相似文献   

2.
The nucleation and growth of GaAs films on offcut (001) Ge wafers by solid source molecular beam epitaxy (MBE) is investigated, with the objective of establishing nucleation conditions which reproducibly yield GaAs films which are free of antiphase domains (APDs) and which have suppressed Ge outdiffusion into the GaAs layer. The nucleation process is monitored by in-situ reflection high energy electron diffraction and Auger electron spectroscopy. Several nucleation variables are studied, including the state of the initial Ge surface (single-domain 2×1 or mixed-domain 2×1:1×2), the initial prelayer (As, Ga, or mixed), and the initial GaAs growth temperature (350 or 500°C). Conditions are identified which simultaneously produce APD-free GaAs layers several microns in thickness on Ge wafers with undetectable Ge outdiffusion and with surface roughness equivalent to that of GaAs/GaAs homoepitaxy. APD-free material is obtained using either As or Ga nucleation layers, with the GaAs domain dependent upon the initial exposure chemical species. Key growth steps for APD-free GaAs/Ge growth by solid source MBE include an epitaxial Ge buffer deposited in the MBE chamber to bury carbon contamination from the underlying Ge wafer, an anneal of the Ge buffer at 640°C to generate a predominantly double atomic-height stepped surface, and nucleation of GaAs growth by a ten monolayer migration enhanced epitaxy step initiated with either pure As or Ga. We identify this last step as being responsible for blocking Ge outdiffusion to below 1015 cm−3 within 0.5 microns of the GaAs/Ge interface.  相似文献   

3.
We report the results of studies which have been made on heteroepitaxial layers of GaAs and AlGaAs grown by metalorganic chemical vapor deposition on composite substrates that consist of four different types of heteroepitaxial layered structures of Ge and Ge-Si grown by molecular beam epitaxy on (100)-oriented Si substrates. It is found that of the four structures studied, the preferred composite substrate is a single layer of Ge ∼1 μm thick grown directly on a Si buffer layer. The double-crystal X-ray rocking curves of 2 μm thick GaAs films grown on such substrates have FWHM values as small as 168 arc sec. Transmission electron micrographs of these Ge/Si composite substrates has shown that the number of dislocations in the Ge heteroepitaxial layer can be greatly reduced by an anneal at about 750° C for 30 min which is simultaneously carried out during the growth of the GaAs layer. The quality of the GaAs layers grown on these composite substrates can be greatly improved by the use of a five-period GaAs-GaAsP strained-layer superlattice (SLS). Using the results of these studies, low-threshold optically pumped AlGaAs-GaAs DH laser structures have been grown by MOCVD on MBE Ge/Si composite substrates.  相似文献   

4.
We demonstrate epitaxially grown high-quality pure germanium (Ge) on bulk silicon (Si) substrates by ultra-high-vacuum chemical vapor deposition (UHVCVD) without involving growth of thick relaxed SiGe buffer layers. The Ge layer is grown on thin compressively strained SiGe layers with rapidly varying Ge mole fraction on Si substrates resulting in several SiGe interfaces between the Si substrate and the pure Ge layer at the surface. The presence of such interfaces between the Si substrate and the Ge layer results in blocking threading dislocation defects, leading to a defect-free pure Ge epitaxial layer on the top. Results from various material characterization techniques on these grown films are shown. In addition, capacitance-voltage (CV) measurements of metal-oxide-semiconductor (MOS) capacitors fabricated on this structure are also presented, showing that the grown structure is ideal for high-mobility metal-oxide-semiconductor field-effect transistor applications.  相似文献   

5.
This paper reports on a detailed study of the development of the close space sublimation method, which has been widely used in the preparation of polycrystalline CdTe/CdS solar cells, as an epitaxial method for the growth of thick CdTe single crystal films over 200 μm on GaAs and Ge substrates for high-energy radiation detectors. The resulting microscopic growth phenomena in the process are also discussed in this paper. High-quality single crystalline CdTe thick films were prepared with x-ray rocking curves full width at half maximum (FWHM) values, which were ∼100 arcsec on Ge substrates and 300 arcsec on GaAs substrates. The quality of thick films on Ge(100) showed a substantial improvement with nucleation in a Te-rich growth environment. No Te inclusions in the CdTe films grown on GaAs(211)B and Ge(100) were observed with IR transmission imaging. Photoluminescence of CdTe/Ge shows a large reduction in the 1.44 eV defect energy bands compared with films grown on GaAs substrates. The film resistivity is on the order of 1010 Ω cm, and the film displayed some sensitivity to alpha particles.  相似文献   

6.
ZnSe heteroepitaxial layers have been grown on GaAs (100), (110) on axis, and (110) 6° miscut substrates by molecular beam epitaxy. ZnSe on GaAs (110) shows smooth and featureless spectra from Rutherford backscattering channeling measurements taken along major crystalline directions, whereas ZnSe on GaAs (100) without pre-growth treatments exhibit large interface disorder in channeling spectra. ZnSe films grown on GaAs (110) on axis show facet formation over a wide range of growth conditions. The use of (110) 6° miscut substrates is shown to suppress facet formation; and under the correct growth conditions, facet-free surfaces are achieved. Etch pit density measurements give dislocation densities for ZnSe epitaxial layers grown on GaAs (100), (110) on axis, and (110) 6° miscut substrates of 107/cm2, 3 × 105/cm2 and 5 × 104/cm2, respectively. These results suggest that with further improvements to ZnSe growth on GaAs (110)-off substrates it may be possible to fabricate defect free ZnSe based laser devices.  相似文献   

7.
Ultra-thin films of Dy are grown on Ge(0 0 1) substrates by molecular beam deposition near room temperature and immediately annealed for solid phase epitaxy at higher temperatures, leading to the formation of DyGex films. Thin films of Dy2O3 are grown on the DyGex film on Ge(0 0 1) substrates by molecular beam epitaxy. Streaky reflection high energy electron diffraction (RHEED) patterns reveal that epitaxial DyGex films grow on Ge(0 0 1) substrates with flat surfaces. X-ray diffraction (XRD) spectrum suggests the growth of an orthorhombic phase of DyGex films with (0 0 1) orientations. After the growth of Dy2O3 films, there is a change in RHEED patterns to spotty features, revealing the growth of 3D crystalline islands. XRD spectrum shows the presence of a cubic phase with (1 0 0) and (1 1 1) orientations. Atomic force microscopy image shows that the surface morphology of Dy2O3 films is smooth with a root mean square roughness of 10 Å.  相似文献   

8.
The quality of germanium (Ge) epitaxial films grown directly on silicon (Si) (001) with 0° and 6° offcut orientation using a reduced-pressure chemical vapor deposition system is studied and compared. Ge film grown on Si (001) with 6° offcut presents ~65% higher threading dislocation density and higher root-mean-square (RMS) surface roughness (1.92 nm versus 0.98 nm) than Ge film grown on Si (001) with 0° offcut. Plan-view transmission electron microscopy also reveals that threading dislocations are more severe (in terms of contrast and density) for the 6° offcut. In addition, both high-resolution x-ray diffraction and Raman spectroscopy analyses show that the Ge epilayer on 6° offcut wafer presents higher tensile strain. The poorer quality of the Ge film on Si (001) with 6° offcut is a result of an imbalance in Burgers vectors that favors dislocation nucleation over annihilation.  相似文献   

9.
[100] composition modulation as well as [101] and $$1$$ tweed strain contrast were observed in 0.72 μm thick Zn1?xMgxS Se1?y epitaxial films grown on ZnSe buffer layers. The lattice distortion induced tweed strain contrast disappears in relaxed Zn1?xMgxS Se1?y layers of thicknesses above ~ 0.8—1 μm even though the [100] composition modulation remains. Instead, the formation of microtwins takes place to relieve the strain in the distorted lattice of the quaternary films. The Zn1?xMgxSySe1?y layers were obtained by growing a ZnSe buffer layer on Asstabilized GaAs substrates with Zn treatment of the substrate prior to the growth of the film. The samples with film thickness of ~0.72 μm were of very high quality with a defect density of less than 5 x lO4/cm2. Some samples showed rough ZnSe/ GaAs interfaces and a high density of Frank partial dislocations originating at the ZnSe/GaAs interface. The interface roughness is believed to result from an As-rich GaAs surface after the oxide desorption.  相似文献   

10.
There has been increased interest in high quality ZnO films for use in a diverse range of applications such as in high frequency surface acoustic wave filters, buffer layers for GaN growth, transparent and conductive electrodes, and solid state lasers. In the present paper, ZnO films were epitaxially grown on R-plane sapphire substrates by metalorganic chemical vapor deposition at temperatures in the range 350–450°C. X-ray diffraction and electron microscopy results indicate that the ZnO films are epitaxially grown on ( $01\bar 12$ ) Al2O3 surface with the ( $11\bar 20$ ) plane parallel to the surface. Cross-sectional high resolution-transmission electron microscopy imaging of the as-grown film shows that the interface is semi-coherent and atomically sharp, with misfit dislocations relieving the misfit strain between ZnO and sapphire. In order to check the thermal stability of the as-grown ZnO films, annealing in an O2+N2 ambience at 850°C for 30 min was performed. The annealed films showed improved crystallinity. At the same time, limited reaction between ZnO and sapphire occurred, resulting in the formation of a 15–20 nm thick spinel layer at the interface.  相似文献   

11.
III–V solar cells on Si substrates are of interest for space photovoltaics since this would combine high performance space cells with a strong, lightweight and inexpensive substrate. However, the primary obstacles blocking III–V/Si cells from achieving high performance to date have been fundamental material incompatibilities, namely the 4% lattice mismatch between GaAs and Si, and the large mismatch in thermal expansion coefficient. In this paper, we report on the molecular beam epitaxial (MBE) growth and properties of GaAs layers and single junction GaAs cells on Si wafers which utilize compositionally graded GeSi intermediate buffers grown by ultra‐high vacuum chemical vapor deposition (UHVCVD) to mitigate the large lattice mismatch between GaAs and Si. GaAs cell structures were found to incorporate a threading dislocation density of 0.9–1.5×10 cm−2, identical to the underlying relaxed Ge cap of the graded buffer, via a combination of transmission electron microscopy, electron beam induced current, and etch pit density measurements. AlGaAs/GaAs double heterostructures were grown on the GeSi/Si substrates for time‐resolved photoluminescence measurements, which revealed a bulk GaAs minority carrier lifetime in excess of 10 ns, the highest lifetime ever reported for GaAs on Si. A series of growths were performed to assess the impact of a GaAs buffer layer that is typically grown on the Ge surface prior to growth of active device layers. We found that both the high lifetimes and low interface recombination velocities are maintained even after reducing the GaAs buffer to a thickness of only 0.1 μm. Secondary ion mass spectroscopy studies revealed that there is negligible cross diffusion of Ga, As and Ge at the III–V/Ge interface, identical to our earlier findings for GaAs grown on Ge wafers using MBE. This indicates that there is no need for a buffer to ‘bury’ regions of high autodoping, and that either pn or np configuration cells are easily accommodated by these substrates. Preliminary diodes and single junction AlGaAs heteroface cells were grown and fabricated on the Ge/GeSi/Si substrates for the first time. Diodes fabricated on GaAs, Ge and Ge/GeSi/Si substrates show nearly identical I–V characteristics in both forward and reverse bias regions. External quantum efficiencies of AlGaAs/GaAs cell structures grown on Ge/GeSi/Si and Ge substrates demonstrated nearly identical photoresponse, which indicates that high lifetimes, diffusion lengths and efficient minority carrier collection is maintained after complete cell processing. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
采用低温缓冲层技术在Si衬底上生长高质量Ge薄膜   总被引:1,自引:1,他引:0  
采用低温缓冲层技术,在Si衬底上生长了质量优良的Ge薄膜。利用原子力显微镜(AFM)、双晶X射线衍射(XRD)和拉曼散射等研究了薄膜的晶体质量。结果表明,由于无法抑制三维岛状生长,低温Ge缓冲层的表面是起伏的。然而,Ge与Si间的压应变几乎完全弛豫。当缓冲层足够厚时,后续高温Ge外延层的生长能够使粗糙的表面变得平整。在...  相似文献   

13.
Heteroepitaxial films of the III-V compounds, A1N, GaN and GaAs have been grown on insulating substrates by reactions involving Group III metal-organic compounds and Group V hydrides. The films were examined with respect to crystallography, surface topography, uniformity, residual strain, and electrical and acoustic properties with emphasis on those orientations which are of particular interest to surface acoustic wave (SAW) device applications. Aluminum nitride films up to 10 μm in thickness were grown on 1″ diameter sapphire substrates with a 5% to 10% thickness variation. The films, though characterized as single crystal by x-ray means, exhibited a grain-like structure and considerable surface faceting. The residual strain in the films depends on the crystallographic direction and increases substantially with film thickness. These films exhibit useful surface acoustic properties. Epitaxial GaN films are more easily prepared than A1N films but by contrast are semiconducting unless “doped” with Zn or Li during the growth process. Films of this material are similar crystallographically to A1N and preliminary results show that they exhibit piezoelectric properties. The lack of published data on the acoustic properties of GaN films is probably due to the difficulty in compensating the films to provide insulating layers in device structures. Preliminary results obtained on GaAs epitaxial layers are discussed briefly because of the semiconducting properties of this material. Research jointly sponsored by the Air Force Materials Laboratory, Wright-Patterson Air Force Base, under Contract F33615-70-C-1536  相似文献   

14.
The effect of in-situ thermal cycle annealing (TCA) has been investigated for GaN growth on GaAs(lOO), GaAs(111) and sapphire substrates. X-ray diffractometry (XRD) and surface morphology studies were performed for this purpose. Enhanced cubic phase characteristics were observed by employing annealingfor GaN layers grown on (001) GaAs. The thickness of the layer subject to annealing is critical in determining the phase of the subsequently grown layer. Thin initial layers appear to permit maintenance of the cubic phase characteristics shown by the substrate, while hexagonal phase characteristics are manifested for thick initial layers. Higher temperature of annealing of thick pre-annealed layers results in changes from mixed cubic/hexagonal phase to pure hexagonal phase. Growth on GaAs(111) substrates showed single cubic phase characteristics and similar enhancement of crystal quality by using TCA as for layers on GaAs(OOl). Micro-cracks were found to be present after TCA on GaAs(lll) substrates. Thermal cycling also appears to be beneficial for layers grown on sapphire substrates.  相似文献   

15.
Epitaxial (100) CdTe and ZnTe layers with high crystalline quality have been grown on Si substrates by atmospheric pressure organometallic vapor phase epitaxy (OMVPE). A thin Ge interfacial layer grown at low temperature was used as a buffer layer prior to ZnTe and CdTe growth. The layers were characterized by Nomarski optical microscopy and double crystal x-ray diffraction. Double crystal rocking curves with full width at half maximum of about 110 and 250 arc-sec have been obtained for a 7 μm thick ZnTe layer and a 4 μm thick CdTe layer, respectively. The results presented demonstrate a novel method ofin-situ Si cleaning step without a high temperature deoxidation process to grow high quality CdTe and ZnTe on Si in a single OMVPE reactor.  相似文献   

16.
研究了低温缓冲层对在GaAs(001)衬底上用分子束外延(MBE)生长ZnTe薄膜晶体质量的影响。发现插入低温缓冲层后ZnTe的结晶质量、表面形貌和发光质量都得到了显著的提高,双晶X射线摇摆曲线(DCXRC)的ZnTe(004)衍射峰半峰宽(FWHM)从529 arcsec减小到421 arcsec,表面均方根(RMS)粗糙度从6.05 nm下降到3.93 nm。而作为对比,插入高温缓冲层并不能对ZnTe薄膜的质量起到改善作用。基本上实现了优化工艺的目标并为研制ZnTe基光电器件微结构材料奠定了很好的实验基础。  相似文献   

17.
The initial nucleation of GaSb on (001) GaAs substrates by metalorganic vapor phase epitaxy has been investigated using transmission electron microscopy (TEM) and high resolution electron microscopy (HREM). TEM results showed that the GaSb islands experience a morphological transition as the growth temperature increases. For growth at 520°C, the islands are longer along the [110] direction; at 540°C, they are nearly square, and at 560°C, they are longer along the direction. Possible mechanisms are proposed to describe such a transition. TEM and HREM examination showed that lattice misfit relaxation mechanisms depend on the growth temperature. For the sample grown at 520°C, the lattice mismatch strain was accommodated mainly by 90° dislocations; for the sample grown at 540°C, the misfit strain was relieved mostly by 90° dislocations with some of 60° dislocations, and for the sample grown at 560°C, the strain was accommodated mainly by 60° dislocations which caused a local tilt of the GaSb islands with respect to the GaAs substrate. The density of threading dislocations was also found to be dependent on the growth temperature. Mechanisms are proposed to explain these phenomena.  相似文献   

18.
Epitaxial CdTe layers were grown using organometallic vapor phase epitaxy on Si substrates with a Ge buffer layer. Ge layer was grown in the same reactor using germane gas and the reaction of germane gas with the native Si surface is studied in detail at low temperature. It is shown that germane gas can be used to “clean” the Si surface oxide prior to CdTe growth by first reducing the thin native oxide that may be present on Si. When Ge layer was grown on Si using germane gas, an induction period was observed before the continuous layer of Ge growth starts. This induction period is a function of the thickness of the native oxide present on Si and possible reasons for this behavior are outlined. Secondary ion mass spectrometry (SIMS) data show negligible outdiffusion and cross contamination of Ge in CdTe.  相似文献   

19.
High-quality, single-crystal epitaxial films of CdTe(112)B and HgCdTe(112)B have been grown directly on Si(112) substrates without the need for GaAs interfacial layers. The CdTe and HgCdTe films have been characterized with optical microscopy, x-ray diffraction, wet chemical defect etching, and secondary ion mass spectrometry. HgCdTe/Si infrared detectors have also been fabricated and tested. The CdTe(112)B films are highly specular, twin-free, and have x-ray rocking curves as narrow as 72 arc-sec and near-surface etch pit density (EPD) of 2 × 106 cm−2 for 8 μm thick films. HgCdTe(112)B films deposited on Si substrates have x-ray rocking curve FWHM as low as 76 arc-sec and EPD of 3-22 × 106 cm−2. These MBE-grown epitaxial structures have been used to fabricate the first high-performance HgCdTe IR detectors grown directly on Si without use of an intermediate GaAs buffer layer. HgCdTe/Si infrared detectors have been fabricated with 40% quantum efficiency and R0A = 1.64 × 104 Ωm2 (0 FOV) for devices with 7.8 μm cutoff wavelength at 78Kto demonstrate the capability of MBE for growth of large-area HgCdTe arrays on Si.  相似文献   

20.
Dy thin films are grown on Ge(0 0 1) substrates by molecular beam deposition at room temperature. Subsequently, the Dy film is annealed at different temperatures for the growth of a Dy-germanide film. Structural, morphological and electrical properties of the Dy-germanide film are investigated by in situ reflection high-energy electron diffraction, and ex situ X-ray diffraction, atomic force microscopy and resistivity measurements. Reflection high-energy electron diffraction patterns and X-ray diffraction spectra show that the room temperature growth of the Dy film is disordered and there is a transition at a temperature of 300-330 °C from a disordered to an epitaxial growth of a Dy-germanide film by solid phase epitaxy. The high quality Dy3Ge5 film crystalline structure is formed and identified as an orthorhombic phase with smooth surface in the annealing temperature range of 330-550 °C. But at a temperature of 600 °C, the smooth surface of the Dy3Ge5 film changes to a rough surface with a lot of pits due to the reactions further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号