首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
He Lin  Xiang Gao  Kefa Cen 《Fuel》2004,83(10):1349-1355
Removal of NOx (namely DeNOx) from simulated flue gas with direct current (d.c.) corona radical shower system was investigated. Steady streamer coronas occur when the flow rates of the fed gases are adjusted properly. The experimental results show that both the composition and the flow rate of the gas fed into the nozzles influence the V-I characteristic of corona discharge. The vapor in the flue gas restrains the discharge, reduces the discharge current, but enhances the DeNOx efficiency. Furthermore, removal of NOx from flue gas by radical injection associated with alkali solution (26% by weight of NaOH in water) scrubbing was carried out. Oxygen together with water vapor is fed into the nozzle electrode and the oxygen and water molecules are decomposed in the corona zone. It is found that NO and NO2 can be converted into HNO2 and HNO3, respectively, by radicals formed during the discharge process and the conversion efficiency of NOx in the plasma reactor is more than 60%. The overall DeNOx efficiency of the system reaches 81.7% after the flue gas was scrubbed by the NaOH solution.  相似文献   

2.
The effect of feeding rate of NaClO2 solution, inlet SO2 and NO concentration, [NaClO2]/[SO2+NO] molar ratio (η), L/G ratio and, solution pH on the simultaneous removal of SOx/NOx has been investigated in a wetted-wall column. Both SOx and NOx removal efficiencies are enhanced with the increasing feeding rate of NaClO2 solution and attain a steady state. NOx removal efficiency increases with increasing SO2 concentration, but SOx removal remains unaffected with increasing NO concentration. In an acidic medium, DeSOx and DeNOx efficiency increased with increasing [NaClO2]/[SO2+NOx] molar ratio and attained a steady state. NOx removal starts only after the complete removal of SOx. The excess of NaClO2 does not enhance NOx removal efficiency. Solution pH does not affect the DeSOx and DeNOx efficiency. The maximum SOx and NOx removal efficiencies achieved at the typical operating conditions of commercialized FGD processes are about 100 and 67%, respectively.  相似文献   

3.
A novel silica–titania (SiO2–TiO2) nanocomposite has been developed to effectively capture elemental mercury (Hg0) under UV irradiation. Previous studies under room conditions showed over 99% Hg0 removal efficiency using this nanocomposite. In this work, the performance of the nanocomposite on Hg0 removal was tested in simulated coal-fired power plant flue gas, where water vapor concentration is much higher and various acid gases, such as HCl, SO2, and NOx, are present. Experiments were carried out in a fix-bed reactor operated at 135 °C with a baseline gas mixture containing 4% O2, 12% CO2, and 8% H2O balanced with N2. Results of Hg speciation data at the reactor outlet demonstrated that Hg0 was photocatalytically oxidized and captured on the nanocomposite. The removal efficiency of Hg0 was found to be significantly affected by the flue gas components. Increased water vapor concentration inhibited Hg0 capture, due to the competitive adsorption of water vapor. Both HCl and SO2 promoted the oxidation of Hg0 to Hg(II), resulting in higher removal efficiencies. NO was found to have a dramatic inhibitory effect on Hg0 removal, very likely due to the scavenging of hydroxyl radicals by NO. The effect of NO2 was found to be insignificant. Hg removal in flue gases simulating low rank coal combustion products was found to be less than that from high rank coals, possibly due to the higher H2O concentration and lower HCl and SO2 concentrations of the low rank coals. It is essential, however, to minimize the adverse effect of NO to improve the overall performance of the SiO2–TiO2 nanocomposite.  相似文献   

4.
This paper presents the results of an experimental study on a 300-MW boiler unit fired with Thai lignite. Effects of operating conditions (excess air ratio and unit load) and fuel quality on the boiler heat losses and thermal efficiency as well as on the gaseous (CO2, CO, NOx and SO2) and particulate matter (PM) emissions from the boiler unit are discussed. The boiler thermal efficiency was weakly affected by the excess air ratio, unit load and fuel lower heating value, varying from 90.3 to 92.3% for wide ranges of the above variables. In all the tests, the NOx, SO2 and PM emissions were below the national emission standards for these pollutants. Quite low level of the SO2 emission was secured by the high-efficiency flue gas desulphurization system. The CO emissions of rather small values were detected only at extremely low excess air ratios. The emission rate and specific emission (i.e. per MWh of electricity produced) for NOx, SO2 and CO were quantified using experimental emission concentrations of the pollutants. Meanwhile, the emission characteristics for CO2 were determined with the use of fuel-C and fuel consumption by the boiler. In addition, the emission rate and specific emission for PM were estimated by taking into account the actual fuel-ash content and fuel consumption by the boiler, as well as the effects of SO2 adsorption by fly ash in the boiler gas ducts and overall ash-collecting efficiency of the electrostatic precipitators and flue gas desulphurization system. Elevated CO2 and NOx emissions from the 300-MW boiler units firing Thai lignite are of great concern.  相似文献   

5.
介质阻挡放电中气体成分对NOx脱除的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
汪涛  孙保民  肖海平  杜旭  曾菊瑛  段二朋  饶甦 《化工学报》2012,63(11):3652-3659
利用介质阻挡放电(DBD)产生低温等离子体进行烟气的脱硝实验,研究了在乙烯存在的条件下,温度和其他烟气成分对NOx脱除率的影响。结果表明:随着温度的升高,NO脱除速率增快;模拟烟气中加入CO2,在能量密度较低时,CO2作为电负性分子会降低自由基的生成,导致NO的脱除率降低,随着能量密度的升高,CO2对NO脱除的影响减小;模拟烟气中加入水后可以产生更多的OH、HO2等自由基,促进NO的氧化;SO2的加入会与自由基O反应,使初始反应中O与C2H4的反应速率减弱,从而影响了NO的氧化速率,但O3、HO2等强氧化自由基会优先与NO反应,因此SO2的加入不会影响NO最终的脱除率。  相似文献   

6.
Simultaneous sulfur dioxide (SO2) and nitrogen oxides (NOx) removal from flue gas can be achieved with high efficiency by microwave with potassium permanganate (KMnO4) over zeolite. The experimental results showed that the microwave reactor could be used to oxidation of SO2 to sulfate with the best desulfurization efficiency of 96.8% and oxidize NOx to nitrates with the best NOx removal efficiency of 98.4%. Microwave accentuates catalytic oxidation treatment, and microwave addition can increase the SO2 and NOx removal efficiency by 7.2% and 12.2% separately. The addition of zeolite to microwave potassium permanganate increases from 16.5% to 43.5% the microwave removal efficiency for SO2, and the NOx removal efficiency from 85.6% to 98.2%. The additional use of potassium permanganate to the microwave zeolite leads to the enhancement of SO2 removal efficiency up from 53.9% to 95%, and denitrification efficiency up from 85.6% to 98.2%. The optimal microwave power and empty bed residence time (EBRT) on simultaneous desulfurization and denitrification are 259 W and 0.357 s, respectively. SO2 and NOx were rapidly oxidized in microwave induced catalytic oxidation reaction using potassium permanganate with zeolite being the catalyst and microwave absorbent.  相似文献   

7.
In this study, we propose a plasma-chemical hybrid NOx removal process using nonthermal plasma for the treatment of flue gases emitted from glass melting furnaces; the process is demonstrated through a laboratory-scale model experiment conducted using a semi-dry desulfurization apparatus. The performance of the system for simultaneous removal of SO2 and NOx is investigated. As a result, NO is effectively oxidized to NO2 by injecting ozone into the spray region and the removal efficiencies of 90% and 50% were obtained for NO and NOx, respectively. In addition, the SO2 removal efficiency of 84% was achieved.  相似文献   

8.
9.
Overall examination was made on the removal of NO and SO2, by pulsed corona discharge process. The mechanism for the removal of NO was found to largely depend on the gas composition. In the absence of oxygen, most of the NO removed was reduced to N2; on the other hand, oxidation of NO to NO2 was dominant in the presence of oxygen even when the content was low. Water vapor was an important ingredient for the oxidation of NO2, to nitric acid rather than that of NO to NO2. The removal of NO only slightly increased with the concentration of ammonia while the effect of ammonia on the removal of SO2 was very significant. The energy density (power delivered/feed gas flow rate) can be a measure for the degree of removal of NO. Regardless of the applied voltage and the flow rate of the feed gas stream, the amount of NO removed was identical at the same energy density. The production of N2O increased with the pulse repetition rate, and the presence of NH3 and SO2 enhanced it. Byproducts generated from propene used as additive were identified and analyzed. The main byproducts other than carbon oxides were found to be ethane and formaldehyde, but their concentrations were negligibly small.  相似文献   

10.
A novel process for the removal of NOx from flue gas by a combined Fe(II)EDTA absorption and microbial reduction has been demonstrated. Fe(II)EDTA–NO and Fe(III)EDTA (EDTA: ethylenediaminetetraacetate) can be effectively reduced to the active Fe(II)EDTA in the reactor containing microorganisms. In a steady‐state absorption and regeneration process, the final removal efficiency of NO is up to 88%. The effects of four main parameters (i.e. NO, O2 and SO2 concentrations, and the amount of cyclic solution) on NOx removal efficiency were experimentally investigated at 50 °C. The results provide some insight into conditions required for the successful removal of NOx from flue gas using the approach of Fe(II)EDTA absorption combined with microbial reduction. Copyright © 2005 Society of Chemical Industry  相似文献   

11.
UV/H2O2氧化联合Ca(OH)2吸收同时脱硫脱硝   总被引:1,自引:0,他引:1       下载免费PDF全文
刘杨先  张军  王助良 《化工学报》2012,63(10):3277-3283
在小型紫外光-鼓泡床反应器中,对UV/H2O2氧化联合Ca(OH)2吸收同时脱除燃煤烟气中NO与SO2的主要影响因素[H2O2浓度、紫外光辐射强度、Ca(OH)2浓度、NO浓度、溶液温度、烟气流量以及SO2浓度]进行了考察。采用烟气分析仪和离子色谱仪分别对尾气中的NO2和液相阴离子作了检测分析。结果显示:在本文所有实验条件下,SO2均能实现完全脱除。随着H2O2浓度、紫外光辐射强度和Ca(OH)2浓度的增加,NO的脱除效率均呈现先大幅度增加后轻微变化的趋势。NO脱除效率随烟气流量和NO浓度的增加均有大幅度下降。随着溶液温度和SO2浓度的增加,NO脱除效率仅有微小的下降。离子色谱分析表明,反应产物主要是SO42-和NO3-,同时有少量的NO2-产生。尾气中未能检测到有害气体NO2。  相似文献   

12.
Recent developments in novel sorbents for flue gas clean up   总被引:4,自引:0,他引:4  
Coal combustion is one of the most important energy sources for electricity generation, but also produces airborne pollutants. The amount of SO2 and NOx for example, is in the order of hundreds to thousands of ppm, and tens to hundreds of ppm, respectively, while Hg in flue gases could be up to tens to hundreds of ppb. Flue gas desulphurization technology is already in place for SO2 removal, and new sorbents such as zeolites are being investigated for such an application. NOx can be removed by selective catalytic reduction with various catalysts. Mercury is the hardest to remove due to its persistent nature and relatively low concentration in flue gases. New sorbents have also been developed for mercury removal applications. A current trend in flue gas emission control is to remove Hg, NOx and SO2 simultaneously. Various catalytic sorbents have been investigated to remove two or more of these pollutants concurrently. This article reviews recent developments made for emission control of coal-fired power plant flue gases using novel sorbents to target individual or multiple pollutants.  相似文献   

13.
Selective catalytic reduction (SCR) is a major commercial technology for NO x removal in power plants. There are a lot of complex chemical reactions in SCR reactors, and it is of great significance to understand the internal process of chemical reactions for SCR DeNO x and study the impact of various factors on NO x removal efficiency. In this paper, the impact of reaction temperature, ammonia-nitrogen molar ratio and resident time in the catalyst bed layer on NO x removal efficiency were studied by simulation of chemical reactions. Then calculated results were compared with catalyst activity test data in a power plant, which proved that the simulated results were accurate. As a result, the reaction conditions were optimized in order to get the best removal efficiency of NO, so that we can provide a reference for optimal running of SCR in power plants.  相似文献   

14.
Yewen Tan 《Fuel》2002,81(8):1007-1016
This paper describes a series of experiments conducted with natural gas in air and in mixtures of oxygen and recycled flue gas, termed O2/CO2 recycle combustion. The objective is to enrich the flue gas with CO2 to facilitate its capture and sequestration. Detailed measurements of gas composition, flame temperature and heat flux profiles were taken inside CANMET's 0.3 MWth down-fired vertical combustor fitted with a proprietary pilot scale burner. Flue gas composition was continuously monitored. The effects of burner operation, including swirling of secondary stream and air staging, on flame characteristics and NOx emissions were also studied. The results of this work indicate that oxy-gas combustion techniques based on O2/CO2 combustion with flue gas recycle offer excellent potential for retrofit to conventional boilers for CO2 emission abatement. Other benefits of the technology include considerable reduction and even elimination of NOx emissions, improved plant efficiency due to lower gas volume and better operational flexibility.  相似文献   

15.
Lean-burn engines can offer superior fuel efficiency but require advanced technology for NOx emission control. Electrochemical-catalytic cell has been proposed for lean DeNOx. This work demonstrates that the DeNOx rate can be enhanced by the presence of H2O and/or CO2, and can increase with increasing H2O and CO2 concentrations, although the increased extent is quite small. In the low NOx concentration range, relatively constant DeNOx rates were observed and can result in zero NOx emissions, where the presence of H2O and CO2 has important enhancement effect. Higher temperature generally results in larger N2 selectivity in the low NOx concentration region.  相似文献   

16.
Ammonium nitrate is thermally stable below 250 °C and could potentially deactivate low temperature NOx reduction catalysts by blocking active sites. It is shown that NO reduces neat NH4NO3 above its 170 °C melting point, while acidic solids catalyze this reaction even at temperatures below 100 °C. NO2, a product of the reduction, can dimerize and then dissociate in molten NH4NO3 to NO+ + NO3, and may be stabilized within the melt as either an adduct or as HNO2 formed from the hydrolysis of NO+ or N2O4. The other product of reduction, NH4NO2, readily decomposes at ≤100 °C to N2 and H2O, the desired end products of DeNOx catalysis. A mechanism for the acid catalyzed reduction of NH4NO3 by NO is proposed, with HNO3 as an intermediate. These findings indicate that the use of acidic catalysts or promoters in DeNOx systems could help mitigate catalyst deactivation at low operating temperatures (<150 °C).  相似文献   

17.
NOx reduction of flue gas by plasma-generated ozone was investigated in pilot test experiments on an industrial power plant running on natural gas. Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx slightly below two. Fourier transform infrared and ultraviolet absorption spectroscopy were used for spatial measurements of stable molecules and radicals along the reduction reactor. Reactions of O3 injected in the flue gas in the reduction reactor were also modeled. Experiments are in good agreement with numerical simulations. The operation costs for NOx reduction were estimated based on field tests measurements.  相似文献   

18.
The wide implementation of low-NOx combustion technologies in pulverized coal combustion can lead to higher levels of carbon in fly ash and increase the adsorptivity toward surfactants of the carbon. Consequently, the air entraining agent (AEA) requirements of the fly ash used for concrete production increases, which can complicate the stabilization of entrained air. In this study, a low-NOx tangential fired 875 MWth power plant burning bituminous coal have been operated under extreme conditions in order to test the impact of the operating conditions on fly ash adsorption behavior and NOx formation. It was found that the AEA adsorption of the fly ash was reduced up to five times compared to reference operation, when the plant was operated with minimum furnace air staging, three levels of burners instead of four and without recycled flue gas. The lower AEA requirements of the fly ash at these conditions were primarily caused by a reduction in total carbon content, while the AEA adsorptivity of the residual carbon was lowered to about 60% of reference value. The tested operation mode, however, increased the NOx level in the flue gas before the DeNOx plant by 60% compared to reference operation.  相似文献   

19.
Electron beam flue gas treatment technology was applied for removal of SO2 and NOx from flue gas, emitted from combustion of high-sulfur fuel oils. The detailed study of this process was performed in a laboratory by irradiating the exhaust gas from the combustion of three grades of Arabian fuels with an electron beam from accelerator (800 keV, max. beam power 20 kW). SO2 removal is mainly dependent on ammonia stoichiometry, flue gas temperature and humidity and irradiation doses up to 8 kGy. NOx removal depends primarily on irradiation dose. High removal efficiencies up to 98% for SO2 and up to 82% for NOx were obtained under optimal conditions. The flue gas emitted from combustion of high-sulfur fuel oils, after electron beam irradiation, meets the stringent emission standards for both pollutants. The by-product, which is a mixture of ammonium sulphate and nitrate, can be used as a fertilizer as such or blended with other components to produce commercial agricultural fertilizer.  相似文献   

20.
燃煤电厂真实烟气条件下SCR催化剂脱硝性能   总被引:7,自引:2,他引:7       下载免费PDF全文
高岩  栾涛  彭吉伟  吕涛 《化工学报》2013,64(7):2611-2618
制备了具有工业应用价值的V2O5/TiO2负载WO3与MoO3的蜂窝状SCR催化剂,并在某燃煤电厂烟气环境下,对其催化性能进行了测试,结果表明:增大催化剂体积能够提高脱硝效率,但活性增量逐步下降,当脱硝效率达到80%以上时,继续增大催化剂体积其活性提高不显著。催化剂的脱硝活性随着积灰时间的延长而降低,脱硝系统运行4 h后,催化剂脱硝活性减少9.4%。在燃煤电厂尾气飞灰浓度约为0.031 kg·m-3环境下,为满足尾气中NOx浓度排放要求(<200 mg·m-3),每连续运行6 h需进行一次吹灰。催化剂的脱硝性能随着运行时间的延长,先急剧下降,后缓慢降低。在连续运行48~168 h范围内,脱硝活性下降值小于1%,SO2氧化率下降值小于0.1%。在12个月内,平均每连续运行700 h,脱硝活性降低1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号