首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bed and fly ashes originating from industrial-scale fluidized bed combustors (FBCs) were steam hydrated to produce sorbents suitable for further in situ desulphurization. Samples of the hydrated ash were characterized by X-ray diffraction analysis, scanning electron microscopy and porosimetry. Bed ashes were hydrated in a pressure bomb for 30 and 60 min at 200 °C and 250 °C. Fly ash was hydrated in an electrically heated tubular reactor for 10 and 60 min at 200 °C and 300 °C. The results were interpreted by considering the hydration process and the related development of accessible porosity suitable for resulphation. The performance of the reactivated bed ash as sulphur sorbent improved with a decrease of both the hydration temperature and time. For reactivated fly ash, more favourable porosimetric features were observed at longer treatment times and lower hydration temperatures. Finally, it was shown that an ashing treatment (at 850 °C for 20 min) promoted a speeding up of the hydration process and an increase in the accessible porosity.  相似文献   

2.
This study presents findings from experiments on the preparation and characterization of locally available fly ash, quicklime and the CaO/fly ash sorbent, synthesized using the atmospheric hydration process. The CaO was obtained from calcination of limestone in a laboratory kiln at a temperature of 900°C. The sorbents were prepared under different hydration conditions: CaO/fly ash weight ratio (1°1 to 1°3), hydration temperature (55°C–75°C) and hydration period (4–8 h). Results show that the specific surface area of CaO/ fly ash sorbents (8.8–23.6 m2/g) was higher than that of the CaO (4.78 m2/g) at all preparation conditions. The SEM micrographs show that the prepared sorbent had a more porous structure than either the fly ash or the CaO. The X-ray diffraction (XRD) analysis shows the presence of complex compounds containing calcium silicate hydrate in the synthesized sorbents. This contributed to the high BET specific surface area. The Brunauer-Emmett-Teller (BET) specific surface area was found to decrease with increase in the amount of fly ash with the ratio of 1:1 (CaO/Fly ash) giving the highest value. It was also found that an increase in the hydration time resulted in an increased BET specific surface area, although there was only a slight effect on the same by an increase in temperature.  相似文献   

3.
D. Góra  E.M. Bulewicz 《Fuel》2006,85(1):94-106
The hydration behaviour of sixteen ashes, obtained from different commercial-scale fluidized bed combustors, has been investigated. Hydration is important for both ash disposal and reactivation of excess lime present in the ashes for further use in flue gas desulphurization. The techniques used were instrumental and conventional chemical analysis, thermogravimetry and X-ray diffraction. The ashes comprised both fly ash and bottom ash, with particle size less than 2 mm. The ashes were heat treated in air to oxidize free carbon and then hydrated with pressurized steam at about 170 °C, alone and with addition of pure CaO.It has been shown that steam hydration is effective in quantitatively converting CaO to Ca(OH)2, but in most cases the free lime content (i.e. CaO+Ca(OH)2), expressed as CaO, decreases and added CaO enters into pozzolanic reactions with coal ash components, in part or even completely. Both the chemical evidence and X-ray phase analyses indicate that hydrated silicates and silicoaluminates are formed. The hydrated ashes are all able to take up additional SO2 and it appears that the presence of amounts of Ca(OH)2 detectable by phase analysis is not necessary for such capture.  相似文献   

4.
Sulphur dioxide removal using South African limestone/siliceous materials   总被引:1,自引:0,他引:1  
D.O. Ogenga  K.T. Lee  I. Dahlan 《Fuel》2010,89(9):2549-2038
This study presents an investigation into the desulfurization effect of sorbent derived from South African calcined limestone conditioned with fly ash. The main aim was to examine the effect of chemical composition and structural properties of the sorbent with regard to SO2 removal in dry-type flue gas desulfurization (FGD) process. South African fly ash and CaO obtained from calcination of limestone in a laboratory kiln at a temperature of 900 °C were used to synthesize CaO/ash sorbent by atmospheric hydration process. The sorbent was prepared under different hydration conditions: CaO/fly ash weight ratio, hydration temperature (55-75 °C) and hydration period (4-10 h). Desulfurization experiments were done in the fixed bed reactor at 87 °C and relative humidity of 50%. The chemical composition of both the fly ash and calcined limestone had relatively high Fe2O3 and oxides of other transitional elements which provided catalytic ability during the sorbent sorption process. Generally the sorbents had higher SO2 absorption capacity in terms of mol of SO2 per mol of sorbent (0.1403-0.3336) compared to hydrated lime alone (maximum 0.1823). The sorbents were also found to consist of mesoporous structure with larger pore volume and BET specific surface area than both CaO and fly ash. X-ray diffraction (XRD) analysis showed the presence of complex compounds containing calcium silicate hydrate in the sorbents.  相似文献   

5.
The hydration of partially‐sulphated fluidized bed combustor (FBC) ash with water was carried out at laboratory scale. The bottom ash fractions and the as‐received fly ash were hydrated for different lengths of time, at different temperatures between 5°C and 80°C. The free lime and calcium hydroxide content in the samples were analyzed before and after the hydration process. Scanning electron microscopy (SEM) with an energy dispersive X‐ray system (EDX) was employed to investigate the physical characteristics of the samples. X‐ray diffractograms (XRD) were used to obtain information on the phase composition. The current results show that, during the hydration treatment, the unreacted CaO in the partially‐sulphated material can be almost quantitatively converted to Ca(OH)2 but that the free lime content is not constant. It is also clear that effectiveness of the hydration depends on hydration time and temperature. In addition, the behaviour of different particle size fractions is different and there is evidence that the hydration of CaO is not the only reaction occurring in this system.  相似文献   

6.
This paper describes the effect of fly ash on the hydration kinetics of cement in low water to binder (w/b) fly ash-cement at different curing temperatures. The modified shrinking-core model was used to quantify the kinetic coefficients of the various hydration processes. The results show that the effect of fly ash on the hydration kinetics of cement depends on fly ash replacement ratios and curing temperatures. It was found that, at 20 °C and 35 °C, the fly ash retards the hydration of cement in the early period and accelerates the hydration of cement in the later period. Higher the fly ash replacement ratios lead to stronger effects. However, at 50 °C, the fly ash retards the hydration of the cement at later ages when it is used at high replacement ratios. This is because the pozzolanic reaction of the large volumes of fly ash is strongly accelerated from early in the aging, impeding the hydration of the cement.  相似文献   

7.
Rice husk ash/CaO was proposed as a CO2 sorbent which was prepared by rice husk ash and CaO hydration together. The CO2 capture behavior of rice husk ash/CaO sorbent was investigated in a twin fixed bed reactor system, and its apparent morphology, pore structure characteristics and phase variation during cyclic carbonation/calcination reactions were examined by SEM-EDX, N2 adsorption and XRD, respectively. The optimum preparation conditions for rice husk ash/CaO sorbent are hydration temperature of 75 °C, hydration time of 8 h, and mole ratio of SiO2 in rice husk ash to CaO of 1.0. The cyclic carbonation performances of rice husk ash/CaO at these preparation conditions were compared with those of hydrated CaO and original CaO. The temperature at 660 °C–710 °C is beneficial to CO2 absorption of rice husk ash/CaO, and it exhibits higher carbonation conversions than hydrated CaO and original CaO during multiple cycles at the same reaction conditions. Rice husk ash/CaO possesses better anti-sintering behavior than the other sorbents. Rice husk ash exhibits better effect on improving cyclic carbonation conversion of CaO than pure SiO2 and diatomite. Rice husk ash/CaO maintains higher surface area and more abundant pores after calcination during the multiple cycles; however, the other sorbents show a sharp decay at the same reaction conditions. Ca2SiO4 found by XRD detection after calcination of rice husk ash/CaO is possibly a key factor in determining the cyclic CO2 capture behavior of rice husk ash/CaO.  相似文献   

8.
The residence time distribution of limestone sorbent particles has been studied in order to increase the understanding of the conditions for sulphur capture in fluidised bed boilers. Two methods were used. The ‘steady state method’ involves the study of residence time for various particle size fractions. The ‘transient method’ is based on the transient increase in the amount of sorbent carryover with the fly ash, following initial limestone addition to a fresh bed (i.e. a bed with little or no sorbent). For the boiler investigated both methods gave similar results, showing that the major fraction of the sorbent, 80–85%, had a residence time of one hour or more.  相似文献   

9.
煤矸石对硅酸盐水泥水化历程的影响   总被引:8,自引:0,他引:8  
从强度、反应程度、孔溶液碱度和SEM等方面,研究了煤矸石作为水泥辅助胶凝材料的水化情况,并与Ⅱ级粉煤灰进行比较。试验结果表明:煤矸石发生火山灰反应时间比粉煤灰早,且发生火山灰反应所需的碱度值比粉煤灰低;掺煤矸石水泥水化样的早期抗压强度比粉煤灰水泥水化样低,但7d到28d强度增长速率明显大于相同掺量的粉煤灰水泥,相同28d抗压强度的条件下,煤矸石掺量比粉煤灰的掺量高10%。  相似文献   

10.
The current work scrutinizes the effectuation of seawater on morphological properties, pore structure, and compressive strength during the hydration process of fly ash blended cement at 3, 7, 28, 56, and 90 days to better understand the influence of salinity conditions of seawater on the microstructural modification and strength development of the hydration products as well as the total porosity. The chemical reaction's mechanism of mightily soluble salts, for example, Mg2SO4 and NaCl, with hydrated fly ash and blended cement (calcium-bearing phases) was also confirmed. Fourier-transform infrared spectroscopy has been appointed to observe and characterize the energetics of variation in the formulation of portlandite (CH), calcium silicate hydrate, gypsum (Gy), ettringite (AFt), and calcium chloroaluminate (Friedel's salt [FS]) throughout the hydration process of fly ash blended cement with seawater in comparison with deionized water. X-ray diffraction analysis exposed that the peak intensities of FS, portlandite, and some particular phases of the hydrated fly ash blended cement in seawater are higher and sharper than the comparable peaks in deionized water. Mercury intrusion porosimetry-measurements have been appointed that the total porosity of artificial seawater (ASW) was decreased from 28.9% at 3 days to 19.4% at 56 days. In addition, the average, median, and critical pore diameter were decreased in ASW while compared to deionized water (DIW). The reaction products of this work were also characterized using scanning electron microscopy, EDS, compressive strength, and isothermal calorimeter.  相似文献   

11.
Guanghong Sheng  Qin Li  Feihu Li 《Fuel》2007,86(16):2625-2631
Fly ash coming from a circulating fluidized bed combustion (CFBC) boiler co-firing coal and petroleum coke (CFBC fly ash) is very different from coal ash from traditional pulverized fuel firing due to many differences in their combustion processes, and thus they have different effects on the properties of Portland cement. The influences of CFBC fly ash on the strength, setting time, volume stability, water requirement for normal consistency, and hydration products of Portland cement were investigated. The results showed that CFBC fly ash had a little effect on the strength of the Portland cement when its content was below 20%, but the strength decreased significantly if the ash content was over 20%. The water requirement for normal consistency of cement increased from 1.8% to 3.2% (absolute increment value) with an addition of 10% CFBC fly ash; and the free lime (f-CaO) content of CFBC fly ash affected the value of increasing. The setting time decreased with an increase of CFBC fly ash content. The volume stability of the cement was qualified even when the content of SO3 and f-CaO reached 4.48% and 3.0% in cement, respectively. The main hydration productions of cement with CFBC fly ash were C-S-H (hydrated calcium silicate), AFt (ettringite), and portlandite.  相似文献   

12.
The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C.The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling.The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity.  相似文献   

13.
Although the benefits of lithium admixtures for mitigation of alkali-silica reaction (ASR) have been well documented, the potential ancillary effects of lithium compounds on cement and concrete remain largely uncharacterized. To examine the effects of the most common lithium admixture — lithium nitrate — on early-age behavior, the admixture was introduced at dosages of 0% to 400% of the recommended dosage to six cements of varying composition and to a cement-fly ash blend. Behavior was examined by isothermal calorimetry and measurements of chemical shrinkage, autogenous shrinkage, and setting time. Results indicate that lithium nitrate accelerates the early hydration of most cements but may retard hydration after 24 h. In the lowest alkali cement tested, set times were shortened in the presence of lithium nitrate by 15-22%. Higher dosages appeared to increase autogenous shrinkage after 40 days. The replacement of cement by Class F fly ash at 20% by weight appeared to diminish the early acceleration effects, but later hydration retardation and autogenous shrinkage were still observed.  相似文献   

14.
The performance of synthetic ettringite as a sorbent in fluidized bed desulphurization has been assessed and compared with that of a commercial limestone. Experiments have been carried out in a bench scale fluidized bed reactor under simulated desulphurizing (steadily oxidizing) combustion conditions. Sorbent performance has been characterized in terms of desulphurization rate, maximum sulphur uptake and attrition propensity. Fluidized bed sulphation experiments have been complemented by microstructural characterization of solid samples, accomplished via X-ray diffraction analysis, scanning electron microscopy and sulphur mapping of cross-sections of particles embedded in epoxy resin.

Experimental results show that both the rate and the maximum extent of sulphur uptake by ettringite significantly exceed those of the limestone. Maximum degree of free calcium utilization is 0.58 for ettringite compared with 0.27 for the limestone. Sulphation tests also indicate that attrition propensity of ettringite is larger than that correspondingly observed for the limestone. Microstructural characterization indicates that sulphation of ettringite takes place evenly throughout the particle cross-section, whereas sulphation of limestone mostly conforms to a core-shell pattern.

Along a parallel pathway, the rate and yield of ettringite formation by hydration of fly ash from a utility fluidized bed boiler have been assessed. Formation of ettringite in these experiments appears to be quantitative upon curing of ash at 70 °C for times up to 4 days.  相似文献   


15.
Coal serves as the primary energy source in most parts of the world. It is a fact that coal combustion yields enormous quantities of fly ash some of which are either hydraulically placed or dry dumped. The current study attempts to provide a comprehensive characterisation of a disused alkaline fine coal ash dam (FCAD) towards assessing environmental impact, rehabilitation and utilisation potential. Fine coal ash refers to a combination of approximately 83% power station fly ash and 17% gasification and bottom ash fines (particles <250 μm) at SASOL Synfuels. The hydration products found in Weathered Fine Coal Ash (WFCA) using X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) are analcime, calcite, C-S-H gel, ettringite, hydrated gehlenite (Strätlingite), magnetite, periclase, pyrrhotite and sillimanite. High resolution Scanning Electron Microscope (SEM) results provide additional proof that hydration products are present in WFCA. No indication of appreciable leaching was given by X-ray Fluorescence (XRF) results except calcium and silicon. Thus evidence exists that pollutants from saline brines are immobilised in WFCA and an insight of reaction kinetics was obtained. High content of amorphous phase and lack of alteration in some geotechnical properties suggest that WFCA can be reutilised with lime addition to increase alkalinity and activate pozzolanic reactions.  相似文献   

16.
利用热态磨耗实验台研究快速水化团聚颗粒在流化床中热态条件下的磨耗特征.研究表明,飞灰团聚用水量、添加剂用量和流化速度是影响飞灰团聚颗粒磨耗速率大小的关键因素.随着流化速度的降低和添加剂用量的提高,团聚颗粒的磨耗速率降低.飞灰团聚用水量在40%左右时,团聚颗粒磨耗速率最低.亦即在上述条件下团聚颗粒在流化床中停留时间相对较长,进而飞灰碳降低的幅度和自由氧化钙的利用率可能较大.  相似文献   

17.
Effects of the type and amount of fly ash substitution on the heat of hydration of portland cement-fly ash pastes were investigated. Three Turkish fly ashes were used. One of them was a high-calcium and the other two were low-calcium fly ashes. The specimens contained 0, 10, 20, and 40% fly ash by weight of portland cement. The tests were carried out as described in ASTM C 186 however one separate set of specimens were first subjected to an early external temperature of 67±2°C for six hours followed by the standard temperature until time of test. The results revealed that the low-calcium fly ashes, regardless of their type, reduce the heat evolution when used for partial cement replacement. The high-calcium fly ash, on the other hand, does not produce significant changes in the heat of hydration.  相似文献   

18.
This work aims to study the effect of substitution of fly ash for homra on the hydration properties of composite cement pastes. The composite cements are composed of constant proportion of OPC (80%) with variable amounts of fly ash and homra. The addition of fly ash accelerates the initial and final sitting time, whereas the free lime and combined water contents decrease with fly ash content. The fly ash acts as nucleation sites which may accelerate the rate of formation of hydration products which fill some of the pores of the cement pastes. The fire resistance of composite cement pastes was evaluated after firing at 250, 450, 600, 800 °C with rate of firing 5 °C/min with soaking time for 2 h. The physico-mechanical properties such as bulk density and compressive strength were determined at each firing temperature. Moreover, the phase composition, free lime and microstructure for some selected samples were investigated. It can be concluded that the pozzolanic cement with 20 wt% fly ash can be used as fire resisting cement.  相似文献   

19.
Effect of silica fume and fly ash on heat of hydration of Portland cement   总被引:5,自引:0,他引:5  
Results of calorimeter tests on Portland cement-silica fume-fly ash mixtures are presented. Data indicate that silica fume accelerates cement hydration at high water/cementitious ratios and retards hydration at low water/cementitious ratios. On the other hand, fly ash retards cement hydration more significantly at high water/cementitious ratios. When silica fume and fly ash are added together with cement, the reactivity of the silica fume is hampered and the hydration of the cementitious system is significantly retarded.  相似文献   

20.
Modeling the hydration of concrete incorporating fly ash or slag   总被引:2,自引:0,他引:2  
Granulated slag from metal industries and fly ash from the combustion of coal are industrial by-products that have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, the hydration of concrete containing fly ash or slag is much more complex compared with that of Portland cement. In this paper, the production of calcium hydroxide in cement hydration and its consumption in the reaction of mineral admixtures is considered in order to develop a numerical model that simulates the hydration of concrete containing fly ash or slag. The heat evolution rates of fly ash- or slag-blended concrete is determined by the contribution of both cement hydration and the reaction of the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号