共查询到20条相似文献,搜索用时 109 毫秒
1.
一种自适应局部概念漂移的数据流分类算法 总被引:1,自引:0,他引:1
本文基于DB2算法提出一个能实时检测局部概念漂移,并随之自适应调整的数据流分类算法IncreDB2.该算法动态增量维护一个层次分类树.当局部概念漂移出现时,IncreDB2不是重新构造一个全新的分类树,而是仅更新漂移所影响到的局部结点,具有较高的时间效率.实验结果表明了该算法的正确性和有效性. 相似文献
2.
概念漂移数据流挖掘算法综述 总被引:1,自引:0,他引:1
数据流是一种新型的数据模型,具有动态、无限、高维、有序、高速和变化等特性。在真实的数据流环境中,一些数据分布是随着时间改变的,即具有概念漂移特征,称为可变数据流或概念漂移数据流。因此处理数据流模型的方法需要处理时空约束和自适应调整概念变化。对概念漂移问题和概念漂移数据流分类、聚类和模式挖掘等内容进行综述。首先介绍概念漂移的类型和常用概念改变检测方法。为了解决概念漂移问题,数据流挖掘中常使用滑动窗口模型对新近事务进行处理。数据流分类常用的模型包括单分类模型和集成分类模型,常用的方法包括决策树、分类关联规则等。数据流聚类方式通常包括基于k- means的和非基于k- means的。模式挖掘可以为分类、聚类和关联规则等提供有用信息。概念漂移数据流中的模式包括频繁模式、序列模式、episode、模式树、模式图和高效用模式等。最后详细介绍其中的频繁模式挖掘算法和高效用模式挖掘算法。 相似文献
3.
一种面向周期性概念漂移的数据流分类算法 总被引:1,自引:0,他引:1
数据流挖掘已在许多领域得到应用,概念漂移检测是数据流挖掘研究中的一个重点.目前关于数据流中的概念检测的研究虽然取得了很多成果,却没有充分考虑到数据流概念"周期性"出现的特点.针对周期性概念漂移的特点,提出了当"历史概念"重现时,利用对应的模型来对数据流进行分类的方法,从而减小模型更新的代价,加快分类预测的速度.实验证明这种方法提高了运行效率. 相似文献
4.
一种基于双层窗口的概念漂移数据流分类算法 总被引:1,自引:0,他引:1
数据流中概念漂移问题的研究已成为近年来流数据挖掘领域的研究热点之一. 已有的研究工作多依据单窗口中错误率的变化来检测概念漂移,难以适应不同类型的漂移. 为此, 本文提出一种新的基于双层窗口机制的数据流分类算法(Double-windows-based classification algorithm for concept drifting data streams, DWCDS),该算法采用随机决策树模型构建集成分类器, 利用双层窗口机制周期性地检测滑动窗口中流数据分布的变化,并动态地更新模型以适应概念漂移. 分析与实验结果表明: 该算法可以快速有效地跟踪检测含噪数据流中的概念漂移,且抗噪性能与分类精度显著提高. 相似文献
5.
概念漂移探测是数据流挖掘具有挑战意义的研究难点,属性约简是粗糙集理论的研究核心.从概念漂移的角度研究了粗糙集理论的属性约简,从粗糙集属性约简的角度研究了概念漂移,将概念漂移和属性约简进行分析比较,指出了它们之间的区别和联系.提出了基于属性依赖度和条件熵的概念漂移探测准则,并将两种常用的概念漂移探测准则与属性依赖度、条件熵探测准则进行了比较.属性依赖度和条件熵兼具分类准确率的可实验检验和联合概率分布可进行理论分析的优点,还可以进行属性约简(或特征选择).实验结果显示,属性依赖度、条件熵和分类准确率都能有效地探测概念漂移,但是,与分类准确率相比,属性依赖度和条件熵在探测概念漂移时可以增加可重用性,减少工作量.属性约简和概念漂移之间关系的研究为属性约简、概念漂移的研究提供了新方法,为粗糙集、粒计算进一步融入大数据时代潮流提供了新思路. 相似文献
6.
由于在信用卡欺诈分析等领域的广泛应用,学者们开始关注概念漂移数据流分类问题.现有算法通常假设数据一旦分类后类标已知,利用所有待分类实例的真实类别来检测数据流是否发生概念漂移以及调整分类模型.然而,由于标记实例需要耗费大量的时间和精力,该解决方案在实际应用中无法实现.据此,提出一种基于KNNModel和增量贝叶斯的概念漂移检测算法KnnM-IB.新算法在具有KNNModel算法分类被模型簇覆盖的实例分类精度高、速度快优点的同时,利用增量贝叶斯算法对难处理样本进行分类,从而保证了分类效果.算法同时利用可变滑动窗口大小的变化以及主动学习标记的少量样本进行概念漂移检测.当数据流稳定时,半监督学习被用于扩大标记实例的数量以对模型进行更新,因而更符合实际应用的要求.实验结果表明,该方法能够在对数据流进行有效分类的同时检测数据流概念漂移及相应地更新模型. 相似文献
7.
一种基于混合集成方法的数据流概念漂移检测方法 总被引:1,自引:0,他引:1
近年来,数据流分类问题研究受到了普遍关注,而漂移检测是其中一个重要的研究问题。已有的分类模型有单一集成模型和混合模型,其漂移检测机制多基于理想的分布假设。单一模型集成可能导致分类误差扩大,噪音环境下分类效果受到了一定影响,而混合集成模型多存在分类精度和时间性能难以两者兼顾的问题。为此,基于简单的WE集成框架,构建了基于决策树和bayes混合模型的集成分类方法 WE-DTB,并利用典型的概念漂移检测机制Hoeffding Bounds和μ检验来进行数据流环境下概念漂移的检测和分类。大量实验表明,WE-DTB能够有效检测概念漂移且具有较好的分类精度及时空性能。 相似文献
8.
《计算机应用与软件》2017,(12)
针对数据流中出现的概念漂移问题,采用决策树作为分类器,提出一种基于相对熵的数据流概念漂移检测算法。提出的算法将分类器的准确率与相对熵作为判断该数据块是否发生概念漂移的标准。通过5个数据集对该方法进行验证,该算法在其中4个数据集上都获得了最优的结果,在另一个数据集上获得了次优结果。实验结果表明采用该方法不仅能够有效地检测概念漂移的发生,而且还能提高分类器的准确率。 相似文献
9.
挖掘带有概念漂移的数据流对于许多实时决策是十分重要的.本文使用统计学理论估计某一确定模型在最新概念上的真实错误率的置信区间,在一定概率保证下检测数据流中是否发生了概念漂移,并将此方法和KMM(核平均匹配)算法引入集成分类器框架中,提出一种数据流分类的新算法WSEC.在仿真和真实数据流上的试验结果表明该算法是有效的. 相似文献
10.
一种能够适应概念漂移变化的数据流分类方法 总被引:1,自引:0,他引:1
目前多数的数据流分类方法都是基于数据稳定分布这一假设,忽略了真实数据在一段时间内会发生潜在概念性的变化,这可能会降低分类模型的预测精度.针对数据流的特性,提出一种能够识别并适应概念漂移发生的在线分类算法,实验表明它能根据目前概念漂移的状况,自动地调整训练窗口和模型重建期间新样本的个数. 相似文献
11.
不完全决策表的一种信息熵属性约简算法 总被引:1,自引:0,他引:1
属性约简是粗糙集理论的核心问题之一,也是粗糙集有效算法研究的焦点。为获得最简明的规则集,通常希望能找出最小的属性约简集,但得到最优解NP-hard的问题,通常采取启发式的算法得到近似最优解。文中研究了不完全决策表的属性约简,提出了对不完全决策表的一种基于信息熵的属性约简算法,并通过例子说明算法的具体过程和验证了算法的可行性。对寻找对象的相似类的步骤则在排序和二分查找的基础上提出了一种高效的算法,这样就相应地提高了属性约简算法的效率。 相似文献
12.
13.
防火墙通过URL过滤控制对因特网信息资源的访问.为了在高速防火墙上实现URL过滤,本文提出了位图法以改进URL过滤器的哈希表数据结构,提高哈希表查找速度;提出了快速压缩法,降低过滤器的空间占用.经过位图法和快速压缩法改进,并应用高速缓存优化后,采用实验对URL过滤器进行性能评价,发现URL过滤的平均时间下降了253.7%。空间下降了25.7%. 相似文献
14.
何昭青 《计算机工程与科学》2008,30(11):151-154
数据流挖掘分类技术是数据挖掘领域非常具有挑战性的工作。VFDT利用Hoeffding不等式很好地解决了在数据流上进行单遍扫描获取高精度决策树的问题;VFDTc改进了V-FDT ,使其能够处理连续属性。基于VFDT和VFDTc,我们设计并实现了一种基于排序二叉树的高效算法V-FDT-BSTree。该算法解决了VFDTc中存在的问题,提高了样本动态插入和最 佳划分节点选取的速度,从而提高了分类速度。实验结果表明,VFDT-BSTree在保持决策树大小和分类精度不变的基础上,执行时间相比VFDT平均减少32.25%,比VFDTc平均均减少24.96%。 相似文献
15.
基于Hash表的关联规则挖掘算法的改进 总被引:1,自引:0,他引:1
经典的Apriori算法在大项目集的挖掘过程中因为重复搜索导致效率低下。提出一种改进的Hash表结构应用于DHP算法中的项目集存放,定义新的Hash函数确定项目集的存放地址,并基于新的Hash表结构,以并行挖掘的方式优化关联规则算法的剪枝过程。实验结果表明,与Apriori算法相比,文中的方法可以更好地节省存储空间,提高挖掘效率。 相似文献
16.
经典的Apriori算法在大项目集的挖掘过程中因为重复搜索导致效率低下。提出一种改进的Hash表结构应用于DHP算法中的项目集存放,定义新的Hash函数确定项目集的存放地址,并基于新的Hash表结构,以并行挖掘的方式优化关联规则算法的剪枝过程。实验结果表明,与Apriori算法相比,文中的方法可以更好地节省存储空间,提高挖掘效率。 相似文献
17.
董万归 《数字社区&智能家居》2010,(4):859-860
该文结合哈希表提出一种多关键字的排序算法,该算法根据数据元素的关键字转换,利用哈希表的地址映射实现数据元素在有序序列中的位置,从而通过减少关键字比较及移动使排序算法得到优化。算法基于哈希表改进而来,在特殊多关键字排序中具有一定的应用。 相似文献
18.
基于子空间集成的概念漂移数据流分类算法 总被引:2,自引:2,他引:2
具有概念漂移的复杂结构数据流分类问题已成为数据挖掘领域研究的热点之一。提出了一种新颖的子空间分类算法,并采用层次结构将其构成集成分类器用于解决带概念漂移的数据流的分类问题。在将数据流划分为数据块后,在每个数据块上利用子空间分类算法建立若干个底层分类器,然后由这几个底层分类器组成集成分类模型的基分类器。同时,引入数理统计中的参数估计方法检测概念漂移,动态调整模型。实验结果表明:该子空间集成算法不但能够提高分类模型对复杂类别结构数据流的分类精度,而且还能够快速适应概念漂移的情况。 相似文献
19.
李波 《计算机工程与科学》2002,24(3):8-10
本文分析了几种传统属性归纳算法,针对它们的不足,提出了基于取样的概念层次挖掘算法,它不仅可以处理不平衡的概念层次,而且得到的泛化规则可以反映实际的数据分布。此外,这种算法具有最优的时间和空间复杂性。实验证明,本文算法是有效、可行的。 相似文献
20.
提出一种基于粗糙集属性重要性的属性约简算法。该算法以所有条件属性为初始约简集合,以属性重要性为迭代准则,通过逐步缩减来求取约简。同时给出了该算法的时间复杂度分析,并举例验证了所提出算法的有效性和实用性。 相似文献