首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the successful deposition of phosphorous (P)-doped n-type (p-C:P) carbon (C) films, and fabrication of n-C:P/p-Si cells by pulsed laser deposition (PLD) using graphite target at room temperature. The cells performances have been given in the dark IV rectifying curve and IV working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm2, 25 °C). The n-C:P/p-Si cell fabricated using target with the amount of P by 7 weight percentages (Pwt%) shows highest energy conversion efficiency, η=1.14% and fill factor, FF=41%. The quantum efficiency (QE) of the n-C:P/p-Si cells are observed to improve with and Pwt%. The dependence of P content on the electrical and optical properties of the deposited films and the photovoltaic characteristic of the n-C:P/p-Si heterojunction solar cell are discussed.  相似文献   

2.
We report on the electrical and optical characteristics of a-Si:H/c-Si heterojunction solar cells with point-contact junction via patterned SiO2 layer at the interface. The new structure showed improved electrical properties, having a smaller leakage current and a larger shunt resistance. The electrical conduction of the point-contacted samples followed the diffusion dominant process with bulk recombination, but the control samples without SiO2 showed the space-charge region recombination dominant process. The point-contacted samples showed increased internal quantum efficiency in the bulk region, but decreased internal quantum efficiency in the surface region. As the distance between the holes decreased, the point-contacted solar cells showed an improved efficiency with a larger fill-factor but smaller open-circuit voltage and short-circuit current.  相似文献   

3.
Al and Y codoped ZnO (AZOY) transparent conducting oxide (TCO) thin films were first deposited on n-Si substrates by pulsed laser deposition (PLD) to form AZOY/n-Si heterojunction solar cells. However, the properties of the AZOY emitter layers are critical to the performance of AZOY/n-Si heterojunction solar cells. To estimate the properties of AZOY thin films, films deposited on glass substrates with various substrate temperatures (Ts) were analyzed. Based on the experimental results, optimal electrical properties (resistivity of 2.8 ± 0.14 × 10?4 Ω cm, carrier mobility of 27.5 ± 0.55 cm2/Vs, and carrier concentration of 8.0 ± 0.24 × 1020 cm?3) of the AZOY thin films can be achieved at a Ts of 400 °C, and a high optical transmittance of AZOY is estimated to be >80% (with glass substrate) in the visible region under the same Ts. For the AZOY/n-Si heterojunction solar cells, the AZOY thin films acted not only as an emitter layer material, but also as an anti-reflected coating thin film. Thus, a notably high short-circuit current density (Jsc) of 31.51 ± 0.186 mA/cm2 was achieved for the AZOY/n-Si heterojunction solar cells. Under an AM1.5 illumination condition, the conversion efficiency of the cells is estimated at only approximately 4% (a very low open-circuit voltage (Voc) of 0.24 ± 0.001 V and a fill factor (FF) of 0.51 ± 0.011) without any optimization of the device structure.  相似文献   

4.
Polycrystalline Cd1−xZnxTe solar cells with efficiency of 8.3% were grown by cathodic electrodeposition on glass/ITO/CdS substrates using non-aqueous ethylene glycol bath. The deposit is characterised versus the process conditions by XRD and found to possess a preferred (1 1 1) orientation on Sb doping in the electroplating bath. The surface morphology of the deposit is studied using atomic force microscope. The average RMS roughness for the ternary film was higher than that for the binary CdTe. Optical properties of the films were carried out to study the band gap and calculation of molar concentration ‘x’. The effects of Sb doping in CdS/Cd1−xZnxTe heterojunctions have been studied. The short circuit current density (c) was found to improve and series resistance (Rs) reduced drastically upon Sb doping. This improvement in Jsc is attributed to an increase in quantum efficiency. The evaluation of solar cell parameters was also carried out using the current–voltage characteristics in dark and illumination. The best results were obtained when 2×10−3 M ZnCl2 along with antimony were present in the deposition bath. Under AM 1.5 conditions the open circuit voltage, short circuit current density, and fill factor of our best cell were Voc=600 mV, Jsc=26.66 mA/cm2, FF=0.42 and efficiency, η=8.3%. The carrier concentration and built-in potential of Cd1−xZnxTe calculated from Mott–Schottky plot was 2.72×1017 cm−3 and 1.02 eV.  相似文献   

5.
In recent years, increased attention has been focused on the use of lasers in different fabrication steps of solar cells, in particular laser doping to form emitter and/or selective emitter. In this method the laser energy is used to melt silicon, allowing the diffusion of dopant atoms to occur in the liquid phase. The main advantage of this method is the localised nature of the laser beam, which melts and diffuses a limited area without heating the bulk, therefore reducing the possible degradation associated with high temperature processes. At the University of New South Wales a novel laser doping method was developed, which combines the formation of the selective emitter with a self-aligned metallisation pattern. Despite achieving high efficiencies, concerns arose regarding the adhesion of the metal to the shallow laser doped areas. This issue may be alleviated by increasing the roughness of the surface or even more so by creating holes/grooves in the laser doped areas. One simple way of achieving this is by carrying out the laser doping at higher laser energies to deliberately create some ablation. This paper examines the influence of the laser power on the solar cell electrical parameters to ascertain the relationship and the tradeoff between surface roughness and electrical performance. Efficiencies above 18% on a large area commercial grade p-type CZ substrate were achieved despite some ablation, confirming the potential for using this method to improve adhesion. Efficiency of 18.7% on the same substrate, using lower laser power, demonstrates the capability of the laser doping method.  相似文献   

6.
As a promising catalyst for solar hydrogen production, black phosphorus (BP) has received widespread attention due to variable band gaps, high carrier mobility, and strong light absorption performance. Herein, we use MoS2 as a cocatalyst to synthesize BP/MoS2 catalyst with polycrystalline BP to improve photocatalytic performance under visible light irradiation. A small amount of MoS2 can reduce the recombination of electron-hole pairs in the composite, increase carrier transport efficiency, and then improve photocatalytic performance. As expected, the 10/0.5 ratio of BP/MoS2 catalyst exhibits the highest photocatalytic hydrogen evolution performance with a hydrogen evolution rate of 575.4 μmol h?1 g?1, which is 2.5 times of pure BP. Based on the results above, a simple method is provided to synthesize low-cost black phosphorus-based photocatalysts.  相似文献   

7.
We have investigated the carrier transport mechanisms in undoped a-Si:H/p-type c-Si heterojunctions with and without a μc-Si buffer layer, as well as their effects on the photovoltaic properties of the junction. The conduction behavior of the junction is strongly affected by the defect state distribution and band offset at the hetero-interface. The recombination process involving the interface states on the thin film silicon (a-Si:H/μc-Si) side dominates at low forward bias (V<0.3 V), whereas multistep tunneling capture emission (MTCE) dominates in the higher bias region (0.3<V<0.55 V) until the conduction becomes space charge limited (V>0.55 V). The MTCE process seems to be more closely related to the bulk defects in the thin film silicon than the interface states. In addition, the position of a trapping level, where the tunneling process occurs, seems to be determined by the hole energy at the edge of the c-Si and the trap distribution in the thin film silicon. Despite the domination of MTCE in the indicated voltage range, the reduced band offset at the interface increases current levels by the enhanced diffusion and/or emission processes. The insertion of a 200 Å thick μc-Si buffer layer between the a-Si:H (700 Å)/c-Si increases the solar cell efficiency to 10%, without an antireflective coating, by improving both the carrier transport and the red response of the cell.  相似文献   

8.
In order to improve the conversion efficiency of amorphous silicon (a-Si:H) alloy p-i-n solar cells, the original p-a-Si:H window layer is substituted by the boron-doped amorphous diamond (a-D:B) films deposited using filtered cathodic vacuum arc technology. The microstructural, optical and electrical properties as functions of the boron concentrations in the films were, respectively, evaluated by an X-ray photoemission spectroscopy, an ultraviolet-visible spectrometer and a semiconductor parameter analyzer. The photovoltaic parameters of the solar cell modules were also detected as functions of boron concentration. It has been shown that the conductive a-D:B films could be obtained and still remained a wide optical gap. The p-i-n structural amorphous silicon solar cell using the a-D:B window layer increased the conversion efficiency by a roughly 10% relative improvement compared to the conventional amorphous silicon solar cell because of the enhancement of short wavelength response.  相似文献   

9.
Multiple layers of Si quantum dots (QDs) in SiO2 with a narrow size distribution were synthesized by a co-sputtering technique. Structural, electrical and optical properties of Si QD/SiO2 multilayer films with various boron (B) concentrations introduced during the sputtering process were studied. X-ray photoelectron spectroscopy (XPS) revealed B-B/B-Si bonding, which suggests possible boron inclusion in the nanocrystals. The addition of boron was observed to suppress Si crystallization, though the boron concentration was found to have little effect on the QD size. Reductions in film resistivity were observed with the increase in boron concentration, which is believed to be a consequence of an increase in carrier concentration. This is supported by a large decrease in the activation energy accompanying the drop in resistivity, consistent with the Fermi energy moving towards the valence bands. The photoluminescence (PL) intensity was found to decrease with increase in boron concentration.  相似文献   

10.
Heterojunction solar cells have been manufactured by depositing n-type a-Si:H on p-type 1–2 Ω cm Cz single-crystalline silicon substrates. An efficiency of 14.2% has been obtained for 1 cm2 solar cells by using a simple (Al/(p) c-Si/(n) a-Si:H/ITO/metal grid) structure. With an additional surface texturing, we have reached an efficiency of 15.3% for 1 cm2 solar cells. We have investigated the dark IV-curves in order to contribute to a better understanding of the basis of solar cells.  相似文献   

11.
The modifications of the surface and subsurface properties of p-type multicrystalline silicon (mc-Si) after wet chemical etching and hydrogen plasma treatment were investigated. A simple heterojunction (HJ) solar cell structure consisting of front grids/ITO/(n)a-Si:H/(p)mc-Si/Al was used for investigating the conversion efficiency. It is found that the optimized wet chemical etching and cleaning processes as a last technological step before the deposition of the a-Si:H emitter are more favorable to HJ solar cells fabrication than the hydrogenation. Solar cells on p-type mc-Si were prepared without high-efficiency features (point contacts, back surface field). They exhibited efficiencies up to 13% for a cell area of 1 cm2 and 12% for a cell area of 39 cm2.  相似文献   

12.
Current–voltage under illumination and quantum yield characteristics of an amorphous silicon/crystalline silicon hetero solar cell have been measured before and after exposure to high-energy (1.7 MeV) protons. A comparison of the measured wavelength-dependent quantum yield with calculated values enabled to determine the effective electron diffusion length of the crystalline silicon, that dropped from a value of 434 μm before to a value of 4 μm after irradiation with 5×1012 cm−2 protons. Good agreement has been obtained between measured and simulated data using DIFFIN,1 a finite-element simulation program for a-Si:H/c-Si heterojunction solar cells, enabling us to extract the depth profile of the recombination rate and the density of states distribution in the semiconductor layers before and after irradiation.  相似文献   

13.
Spectrally selective solar absorber coatings using metal–dielectric composites offer a high degree of flexibility since their solar selectivity can be optimized by the proper choices of constituents, coating thickness, metal particle concentration, size, shape, and orientation. In this article, Ti:Al2O3 composite films of various Ti contents were prepared by the pulsed laser deposition technique, and their structural and optical properties were investigated by scanning electron microscope, X-ray photoelectron spectroscope, and X-ray diffraction methods. The results demonstrate promising solar spectrally selective behavior indicating Ti:Al2O3 composite as an excellent choice for solar thermal applications.  相似文献   

14.
Hybrid organic–inorganic solar cell was fabricated by thin film of 4-tricyanovinyl-N,N-diethylaniline deposited on p-Si substrates. The capacitance–voltage characteristics indicated that the junction is of abrupt nature. The dark forward current density-voltage characteristics indicated a tunneling conduction at relatively low voltages followed by a space-charge-limited-conduction mechanism at relatively high voltages. Under illumination, the cell exhibits photovoltaic characteristics with an open-circuit voltage of 0.70 V, a short-circuit current density of 9.15 mA cm−2, and a power conversion efficiency of 3.10%. The effect of γ-rays irradiation (100 kGy absorbed dose) on the characteristics of the cell was also investigated. The fill factor and the power conversion efficiency decrease by 20.9% and 39% of the original value, respectively.  相似文献   

15.
Although phosphorus (P) diffusion gettering process has been wildly used to improve the performance of Si solar cells in photovoltaic technology, it is a new attempt to apply P diffusion gettering process to upgraded metallurgical grade silicon (UMG-Si) wafers with the purity of 99.999%. In this paper, improvements on the electrical properties of UMG-Si wafers and solar cells were investigated with the application of P diffusion gettering process. To enhance the improvements, the gettering parameters were optimized on the aspects of gettering temperature, gettering duration and POCl3 flow rate, respectively. As we expected, the electrical properties of both multicrystalline Si (multi-Si) and monocrystalline Si (mono-Si) wafers were significantly improved. The average minority carrier lifetime increased from 0.35 μs to nearly about 2.7 μs for multi-Si wafers and from 4.21 μs to 5.75 μs for mono-Si wafers, respectively. Accordingly, the average conversion efficiency of the UMG-Si solar cells increased from 5.69% to 7.03% for multi-Si solar cells (without surface texturization) and from 13.55% to 14.55% for mono-Si solar cells, respectively. The impurity concentrations of as-grown and P-gettered UMG-Si wafers were determined quantitively so that the mechanism of P diffusion gettering process on UMG-Si wafers and solar cells could be further understood. The results show that application of P diffusion gettering process has a great potential to improve the electrical properties of UMG-Si wafers and thus the conversion efficiencies of UMG-Si solar cells.  相似文献   

16.
Pulsed non-melt laser annealing (NLA) has been used for the first time to modify near-surface defects and related junction properties in Cu(In,Ga)Se2 (CIGS) solar cells. CIGS films deposited on Mo/glass substrates were annealed using a 25 ns pulsed 248 nm laser beam at selected laser energy density in the range 20–60 mJ/cm2 and pulse number in the range 5–20 pulses. XRD peak narrowing and SEM surface feature size increase suggest near-surface structure changes. Dual-beam optical modulation (DBOM) and Hall-effect measurements indicate NLA treatment increases the effective carrier lifetime and mobility along with the sheet resistance. In addition, several annealed CdS/CIGS films processed by NLA were fabricated into solar cells and characterized by photo- and dark-JV and quantum efficiency (QE) measurements. The results show significant improvement in the overall cell performance when compared to unannealed cells. The results suggest that an optimal NLA energy density and pulse number for a 25 ns pulse width are approximately 30 mJ/cm2 and 5 pulses, respectively. The NLA results reveal that overall cell efficiency of a cell processed from an unannealed film increased from 7.69% to 13.41% and 12.22% after annealing 2 different samples at the best condition prior to device processing.  相似文献   

17.
Thin films of Si nanocrystals (Si NCs) embedded in a silicon carbide (SiC) matrix (Si-NC:SiC) were prepared by alternating deposition of Si-rich silicon carbide (Si1−xCx) and near-stoichiometric SiC mutilayers (Si1−xCx/SiC) using magnetron cosputtering followed by a post-deposition anneal. Transmission electron microscopy and Raman spectroscopy revealed that the Si NCs were clearly established, with sizes in the range of 3–5 nm. Optical studies showed an increase in the optical band gap after annealing from 1.4 eV (as-deposited) to 2.0 eV (annealed at 1100 °C). P-type Si-NC:SiC/n-type crystalline silicon (c-Si) heterojunction (HJ) devices were fabricated and their electrical and photovoltaic properties were characterized. The diode showed a good rectification ratio of 1.0×104 at the bias voltage of ±1.0 V at 298 K. The diode ideality factor and junction built-in potential deduced from current–voltage and capacitance–voltage plots are 1.24 and 0.72 V, respectively. Illuminated I–V properties showed that the 1-sun open-circuit voltage, short-circuit current density and fill factor of a typical HJ solar cell were 463 mV, 19 mA/cm2 and 53%, respectively. The external quantum efficiency and internal quantum efficiency showed a higher blue response than that of a conventional c-Si homojunction solar cell. Factors limiting the cell's performance are discussed.  相似文献   

18.
Thin film n-CdS/p-CdTe solar cells were prepared from chemical bath deposited CdS and electrodeposited CdTe layers. The microstructural and some electrical properties of these layers were studied and connection with photovoltaic performance of the cells was shown. Especially, adherence of the CdS films and the quality of heterojunction interface manifesting themselves in the value of the open-circuit voltage Uoc depend on the cadmium precursor used for CdS deposition and on whether pH buffered conditions were applied or not. The number of CdS layers in the cells needed to obtain Uoc of about 700 mV is connected with the CdS deposition conditions.  相似文献   

19.
Doping of interstitial elements B or C into a BCC-type Ti25V35Cr40 alloy to raise effective desorption hydrogenation capacity was investigated. Ti25V35Cr40Mx alloys (M = B or C and x = 0, 0.1, 1, or 5) were prepared by arc-melting followed by homogenization treatment. X-ray diffraction shows that the as-cast specimens have a BCC structure, but they contain some amount of precipitates that increases with the doping concentration of B and C. Doping-induced precipitates can be greatly eliminated by annealing treatment at 1200 °C, indicating that B or C might have been partially dissolved into the interstitial sites in the BCC lattice of matrix phase of specimens. With the doping of C, the second plateau pressure of annealed specimens in the PCI curves at T = 30 °C significantly increases with the amount of C, but the maximum hydrogenation capacity is reduced. On the other hand, the second plateau pressure and maximum hydrogenation capacity are only slightly affected by the B doping. Under optimum doping conditions, the effective hydrogen desorption capacities are increased from 0.80 H/M of the sample without doping to 0.86 H/M and 0.87 H/M for Ti25V35Cr40B1 and Ti25V35Cr40C0.1, respectively. The improvement might be ascribed to the increase in second plateau pressure caused by less stable hydrogen atoms at the lattice sites of Ti25V35Cr40 containing interstitial B or C.  相似文献   

20.
Transparent conducting oxide films of boron and gallium co-doped ZnO (BGZO) were prepared on glass substrates by radio frequency magnetron sputtering at room temperature and 200°C, respectively. The dependence of structural, electrical and optical properties on the thickness and substrate temperature were investigated. All films demonstrated c-axis preferred orientation and showed highly transparent in the visible wavelength region. With the increase thickness and substrate temperature, the grain size of BGZO films increased and the full width at half maximum decreased, the carrier mobility increased and resistivity decreased, which indicated that the crystallinity and conductivity of films were improved. The research also found that the optical band gap (Eg) of BGZO thin films decreased with increased substrate temperature and thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号