首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of the molar fraction of 4-hydroxybutyrate (4-HB) in the poly(3-hydroxybutyrate-4-hydroxybutyrate) [P(3HB-4HB)] biosynthesis by Ralstonia eutropha (formerly Alcaligenes eutrophus) was attempted by the supplemental addition of propionate. The molar fraction of 4-HB in P(3HB-4HB) was increased significantly from 12.3 to 51.8 mol% by the addition of a small amount of propionate along with gamma-butyrolactone commonly used as a precursor for the biosynthesis of P(3HB-4HB). The mechanism of regulation by propionate was investigated by measuring the variation of enzyme activities related to the biosynthesis of P(3HB-4HB) and the level of intermediate metabolite acetyl-CoA. PHB synthase activity was induced significantly by propionate, and the acetyl-CoA concentration also increased significantly due to the additional supply of propionate. The overflowing acetyl-CoA seems to cause an inhibitory effect on the ketolysis reaction catalysing the lysis of 4-hydroxybutyryl-CoA to two molecules of acetyl-CoA; consequently, the 4-HB fraction available for polymerization increased. Accordingly, the molar fraction of 4-HB in P(3HB-4HB) biosynthesis seems to be regulated by both an increased 4-HB fraction and an activated PHB synthase due to the supplemental addition of propionate as a stimulator.  相似文献   

2.
NADPH, a major reducing power in microorganisms, is mostly generated from the pentose phosphate (PP) pathway by glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) expressed by the zwf and gnd genes, respectively. The characteristics of these two genes in Escherichia coli were compared after their re-introduction into the parent strain for over-expression. zwf encoding G6PDH increased the level of NADPH 3 folds compared to gnd encoding 6PGDH. An excess of NADPH depressed cell growth mainly due to the inhibition of citrate synthase in the TCA cycle. Recombinant plasmids containing zwf or gnd co-integrated with the phbCAB operon from Ralstonia eutropha were constructed, and introduced into E. coli for the oddball biosynthesis of PHB. The amount of PHB increased after enforcing the genes; especially the zwf gene an increase of around 41%, due to the rise in NADPH and the depressed TCA cycle, leading to the metabolic flux of intermediates to the pathway for the biosynthesis of PHB.  相似文献   

3.
The regulatory mechanism for poly-3-hydroxybutyrate (PHB) biosynthesis in recombinant Escherichia coli is markedly different from that of Ralstonia eutropha (formerly, Alcaligenes eutrophus) since the former efficiently synthesizes PHB during growth without any nutrient limitation. To analyze how the central metabolic pathways should be balanced with pathways necessary for cell growth and PHB formation, a stoichiometric model was developed to predict the theoretical maximum PHB production capacity for different metabolic variants. Flux analysis results illustrated the importance of the availability of acetyl-CoA and NADPH for achieving the maximum yield of PHB. In order to examine whether the increased availability of the above substances can enhance PHB synthesis in recombinant E. coli, both genetic and environmental perturbations were attempted. Several E. coli K12 derivatives, namely, HMS174, TA3516 (pta-/ack-), and DF11 (pgi-), were transformed with a plasmid which contains the native phb operon. The fermentation characteristics of these recombinant strains were studied and compared. In this study we examined the effects of intracellular acetyl-CoA accumulation, which may promote PHB synthesis in vivo, by perturbations induced from attenuation of acetate kinase and phosphotransacetylase (TA3516, blocked in the acetate pathway) and by cultivation of E. coli HMS174 on gluconate; it can convert gluconate to acetyl-CoA at a higher rate. The effects of intracellular accumulation of NADPH were investigated by introducing a perturbation induced from attenuation of phosphoglucose isomerase, which redirects the carbon flow to the pentose-phosphate (PP) pathway. Results from the analyses of these perturbations indicate that intracellular buildup of acetyl-CoA may not be able to promote PHB synthesis in vivo. On the other hand, since the biosynthesis of PHB in the pgi- mutant strain can utilize the NADPH overproduced through the PP pathway, the growth of the pgi- mutant on glucose was recovered, indicating that the overproduction of NADPH might be able to enhance PHB synthesis.  相似文献   

4.
Two systems, one using an (R)-(-)-3-hydroxybutyrate dehydrogenase (BDH) null mutant of Ralstonia eutropha and the other using a recombinant Escherichia coli strain containing a synthetic poly[(R)-(-)-3-hydroxybutyrate] (PHB) operon and an extracellular PHB depolymerase gene, were used for the fermentative production of (R)-(-)-3-hydroxybutyrate (3HB). The concentration of 3HB in the culture supernatant of the mutant R. eutropha system reached about 30 mM after 5 d under anaerobic conditions, although it was about 4-10 mM under aerobic conditions. On the other hand, the 3HB concentration in the culture supernatant of the recombinant E. coli system reached about 70 mM after 4 d, indicating that about 70% of the glucose added was converted to 3HB.  相似文献   

5.
A cloned tktA gene encoding transketolase (TK), the most critical enzyme in the nonoxidative pentose phosphate (PP) pathway, was reinforced into the parent Escherichia coli for metabolic flux control of carbohydrate. It was also transformed into the transformant E. coli harboring phbCAB operon for the odd-ball biosynthesis of PHB. The biosynthesis of PHB significantly increased up to 1.7-fold after the cotransformation of the phbCAB operon and tktA gene, due to the active supplementation of the precursor molecules, acetyl-CoA and NADPH.  相似文献   

6.
We established a novel enzyme-catalyzed poly(3-hydroxybutyrate) [P(3HB)] synthesis system capable of recycling CoA on the basis of the P(3HB) biosynthetic pathway in Ralstonia eutropha. The system includes purified beta-ketothiolase (PhaA), NADPH-dependent acetoacetyl-CoA reductase (PhaB), PHA synthase (PhaC), acetyl-CoA synthetase (Acs) and glucose dehydrogenase (GDH). In this system, acetyl-CoA was synthesized from acetate and CoA by Acs and ATP, and then two molecules of acetyl-CoA were condensed by PhaA to synthesize acetoacetyl-CoA, which was converted to (R)-3-hydroxybutyryl-CoA (3HBCoA) by PhaB and NADPH. The 3HBCoA was polymerized by PhaC and converted to P(3HB). In this system, the CoA molecules that were released during the condensation and polymerization reactions catalyzed by PhaA and PhaC, respectively, were reused successfully for the synthesis of acetyl-CoA. In addition, NADPH, which was consumed in the reduction of acetoacetyl-CoA, was regenerated by the action of GDH. In this system, the yield of P(3HB) synthesized from acetate as the substrate was 5.6 mg in a 5-ml reaction mixture, and the weight-average molecular weight and polydispersity were 6.64 x 10(6) and 1.36, respectively. Furthermore, CoA was reused at least 26 times, and NADPH was also regenerated at least 26 times during 24 h of reaction.  相似文献   

7.
Polyhydroxybutyrate [P(3HB)] was produced in the transgenic tobacco harboring the genes encoding acetoacetyl-CoA reductase (PhaB) and polyhydroxyalkanoate synthase (PhaC) from Ralstonia eutropha (Cupriavidus necator) with optimized codon usage for expression in tobacco. P(3HB) contents in the transformants (0.2mg/g dry cell weight in average) harboring the codon-optimized phaB gene was twofold higher than the control transformants harboring the wild-type phaB gene. The immunodetection revealed an increased production of PhaB in leaves, indicating that the enhanced expression of PhaB was effective to increase P(3HB) production in tobacco. In contrast, codon-optimization of the phaC gene exhibited no apparent effect on P(3HB) production. This result suggests that the efficiency of PhaB-catalyzed reaction contributed to the flux toward P(3HB) biosynthesis in tobacco leaves.  相似文献   

8.
A rapid and convenient method for the compositional analysis of polyhydroxyalkanoate (PHA) was developed using high-performance liquid chromatography (HPLC) and alkaline sample pretreatment in a 96-well plate format. The reliability of this system was confirmed by the fact that a mutant with a D171G mutation of Aeromonas caviae PHA synthase (PhaC(Ac)), which gained higher reactivity toward 3-hydroxyhexanoate (3HHx), was selected from the D171X mutant library. Together with D171G mutant, several single mutants showing high reactivity toward 3HHx were isolated by the HPLC assay. These new mutants and double mutants combined with an N149S mutation were used to synthesize P(3-hydroxybutyrate-co-3HHx) in Ralstonia eutropha PHB(-)4 from soybean oil as carbon source, achieving higher levels of 3HHx fraction than the wild-type enzyme. Based on these results, the high-throughput screening system will serve as a powerful tool for exploring new and beneficial mutations responsible for regulating copolymer composition of PHA.  相似文献   

9.
The talA gene encoding transaldolase, the key enzyme in the nonoxidative pentose phosphate pathway, was amplified in a transformant Escherichia coli harboring the phbCAB operon to shift the metabolic flux of the hexose mono-phosphate shunt to the odd-ball biosynthesis pathway for poly-beta-hydroxybutyrate overproduction. The PHB content in the transformant E. coli coharboring the phbCAB operon and talA gene increased from 28.2% to 52.3%, and the retarded cell growth was overcome. This increase seems to be mainly due to the concomitant supplies of the intermediates NADPH and acetyl-CoA, which are from the activated pentose phosphate pathway through the modulation of the talA gene and from the Embden-Meyerhof pathway.  相似文献   

10.
The amino acid sequence of an intracellular poly[D(-)-3-hydroxybutyrate] (PHB) depolymerase (PhaZ1) from Ralstonia eutropha H16 was compared with the sequences of various proteins using the BLAST search. It showed a number of matches including with intracellular PHB depolymerases, conserved hypothetical proteins, and PHB synthases. From an alignment of these proteins, we constructed nine mutants: C87A, S118A, H120Q, C183A, C183S, D355A, D356A, C370A, and H388Q. The C183A, D355A, and H388Q mutants lost their activities, but C183S and the other mutants did not. C183, D355, and H388 in PhaZ1 were positioned similarly to the amino acids of the catalytic triad of PHB synthase. These results indicated that C183, D355, and H388 make up the catalytic triad of PhaZ1.  相似文献   

11.
利用转录组学分析手段结合生理生化特性来研究酿酒酵母突变株高产谷胱甘肽的潜在机制。结果表明:突变株谷胱甘肽合成限速酶、抗氧化酶活力及其编码基因表达量、过氧化氢和还原型辅酶Ⅱ(nicotinamide adenine dinucleotide phosphate,NADPH)含量显著提高;丙酮酸激酶活力、丙酮酸、柠檬酸和琥珀酸含量显著降低;此外,三羧酸循环和磷酸戊糖途径的基因表达量分别显著下调和上调。因此,突变株可能在遭受内源性活性氧过氧化氢的胁迫下,通过调节谷胱甘肽合成限速酶活力加强了谷胱甘肽的合成,与抗氧化酶共同抵御氧化胁迫;丙酮酸激酶活力减弱降低了丙酮酸的合成,减少了三羧酸循环的通量,使得磷酸戊糖途径通量增加,从而提高了NADPH含量,为谷胱甘肽的合成提供了充足的还原力。  相似文献   

12.
研究了石榴籽油(PGSO)在D-半乳糖诱导的衰老小鼠体内的抗氧化作用。将60只昆明小鼠随机分为6组:健康组、模型组、维生素E(V_E)阳性对照组以及PGSO低、中、高剂量组,持续给药45 d后,测定各组小鼠的体重,分析PGSO对小鼠肝、肾、脑与血清中抗氧化系统的作用;检测各组小鼠肝、肾中G6PD的活性和NADPH含量。结果表明:与模型组比较,PGSO可拮抗小鼠体重的减轻,降低肝、肾、脑及血清中MDA含量,增加GSH含量,提高T-AOC活性以及抗氧化酶SOD和GSH-Px的活性;且PGSO各剂量组小鼠肝和肾中G6PD的活性均增强,NADPH含量均增加。研究表明PGSO对D-半乳糖诱导的衰老小鼠体内的氧化应激具有明显的拮抗作用。  相似文献   

13.
A recombinant Escherichia coli strain harboring the lambdap(R)-p(L) promoter and heterologous poly-beta-hydroxybutyrate (PHB) biosynthesis genes was shown to accumulate PHB when the incubation temperature was changed from 34 degrees C to temperatures higher than 37 degrees C. In the present research, total gene expression patterns of the recombinant E. coli before and after induction were investigated by two-dimensional gel electrophoresis. Proteins encoded by serS, sucC, trpA, and alaS were found to be expressed before induction of phb genes at a culture temperature of 34 degrees C. On the other hand, proteins encoded by metG, rplI, and carA were found to be expressed after induction achieved by increasing the temperature to 40 degrees C. In the case of plasmid-free cells, all the selected genes have been shown to be expressed except metG, and ibpA and ibpB among the heat-shock proteins. The heat-shock proteins were found to be upregulated upon induction of phb genes, which may be due to the stress caused by the accumulation of PHB granules as well as by the temperature upshift. The changes in the expression of some of the metabolic pathway-related proteins before and after induction were interpreted in relation to the consumption of NADPH and acetyl-CoA for PHB synthesis.  相似文献   

14.
A mixed culture system was considered in the present research where sugars such as glucose were converted to lactate by Lactobacillus delbrueckii and the lactate was converted to poly beta-hydroxybutyrate (PHB) by Ralstonia eutropha in one fermentor. Based on the experimental studies on the effect of lactate concentration on the cell growth of both microorganisms, the lactate concentration was controlled at less than 5 g/l using an on-line enzymatic lactate and glucose sensors with the FIA (flow injection analysis) system, and by manipulating the glucose feeding rate. Since L. delbrueckii prefers anaerobic conditions while R. eutropha prefers aerobic conditions, we studied the effect of DO concentration on fermentation characteristics of each microorganism. For the mixed culture, we considered the control scheme of a two inputs and three outputs multivariable system. It was experimentally shown that the periodic fermentation resulted in superior PHB yield with relatively high productivity as compared with the cases where DO concentration was controlled to be constant either at less than 1 ppm or 3 ppm.  相似文献   

15.
为了提高矢车菊素-3-O-葡萄糖苷(C3G,Cyanidin-3-O-glucoside)的稳定性及亲脂性,本研究用固定化脂肪酶Lipozyme 435催化肉豆蔻酸甲酯对C3G进行酰基化修饰.首先分别在单一有机溶剂和混合有机溶剂中进行酰基化反应,然后通过半制备液相色谱对C3G酰基化衍生物进行分离纯化,并通过液质联用和核...  相似文献   

16.
17.
S-腺苷甲硫氨酸(S-adenosyl-L-methionine,SAM)是一种需求量巨大的活性氨基酸。SAM生产主要是利用过表达甲硫氨酸腺苷转移酶(methionine adenosyltransferase,MAT)的毕赤酵母(Pichia pastoris)进行胞内合成,但较高密度培养条件下甲醇诱导会造成一定程度的细胞死亡。本研究首先揭示甲醇对P.pastoris造成过氧化损伤,然后分析了添加多胺(腐胺和亚精胺)对SAM合成影响及机制。结果揭示多胺可提高H2O2酶活力,从而缓解细胞氧化损伤,此外还改善了MAT酶活力和细胞生长,最终SAM的积累水平提高19.2%。  相似文献   

18.
Microaerobic ethanol production by Saccharomyces cerevisiae CBS 8066 was investigated at different growth rates in respiratory quotient (RQ)-controlled continuous culture. The RQ was controlled by changing the inlet gas composition by a feedback controller while keeping other parameters constant. The ethanol yield increased slightly from the anaerobic values with decreasing RQ, reaching a broad maximum at RQ 20 to 12. There was little or no glycerol production at RQ values below 17 over a wide range of dilution rates. Metabolic flux analysis revealed that a decrease in the ethanol yield at RQ 6 coincided with the cyclic, oxidative operation of the TCA cycle reactions. The model indicated that respiratory dissimilation of glucose only occurs when the oxygen uptake rate is high enough to completely substitute for glycerol formation. The cytosolic and the mitochondrial NADH balances were important for determining the flux distributions. The smallest deviations between estimated and measured product yields were obtained when the unknown co-factor requirements of a limited number of biosynthetic reactions were chosen so that the amount of excess NADH formed in biosynthesis was minimized. The biomass yield was positively correlated with the net amount of NADH reoxidized in respiration and glycerol formation, indicating that the turnover of excess NADH from biosynthesis is an important factor influencing the biomass yield under oxygen-limiting conditions.  相似文献   

19.
In a brief previous report, the gram-negative moderately halophilic bacterium, Halomonas sp. KM-1, that was isolated in our laboratory was shown to produce the bioplastic, poly(3-hydroxybutyrate) (PHB), using biodiesel waste glycerol (Kawata and Aiba, Biosci. Biotechnol. Biochem., 74, 175-177, 2010). Here, we further characterized this KM-1 strain and compared it to other Halomonas strains. Strain KM-1 was subjected to a polyphasic taxonomic study. Strain KM-1 was rod-shaped and formed colonies on a plate that were cream-beige in color, smooth, opaque, and circular with entire edges. KM-1 grew under environmental conditions of 0.1%-10% (w/v) NaCl, pH 6.5-10.5 and at temperatures between 10°C and 45°C. The G+C content of strain KM-1 was 63.9 mol%. Of the 16 Halomonas strains examined in this study, the strain KM-1 exhibited the highest production of PHB (63.6%, w/v) in SOT medium supplemented with 10% glycerol, 10.0 g/L sodium nitrate and 2.0 g/L dipotassium hydrogen phosphate. The intracellular structures within which PHB accumulated had the appearance of intracellular granules with a diameter of approximately 0.5 μm, as assessed by electron microscopy. The intra- and extra-cellular metabolites of strain KM-1 were analyzed by capillary electrophoresis mass spectrometry. In spite of the high amount of PHB stored intra-cellularly, as possible precursors for PHB only a small quantity of 3-hydroxybutyric acid and acetyl CoA, and no quantity of 3-hydroxybutyl CoA, acetoacetyl CoA and acetoacetate were detected either intra- or extra-cellularly, suggesting highly efficient conversion of these precursors to PHB.  相似文献   

20.
食品级的肉桂酸甲酯为酰基供体,运用减压酶法,催化其与矢车菊素-3-O-葡萄糖苷(C3G)发生酰化反应,具有绿色安全、高效且酰化产物单一等优点。对酰化产物进行分离,并进行热稳定性和抗氧化性等性质的测定。结果表明:酰化转化率为80%;利用半制备高效液相色谱仪对酰化后的产物进行分离纯化,纯化后的酰化C3G纯度达98.3%;经质谱分析可知,酰化后产物为矢车菊素-3-(6-肉桂酰)-葡萄糖苷(C3(6C)G)。酰基化修饰使花色苷的脂溶性、热稳定性得到了明显改善。采用1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除、2,2-氨基-二(3-乙基-苯并噻唑啉-6-磺酸)(2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid,ABTS)阳离子自由基清除、铁离子还原/抗氧化能力法(ferric reducing and antioxidant power,FRAP)、羟自由基清除体外实验测定不同浓度下C3G、C3(6C)G和VC的抗氧化能力。与相同浓度的VC相比,除了在ABTS阳离子自由基清...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号