首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uranium-molybdenum alloy powders are raw material of uranium alloy fuels prepared by powder metallurgic process in nuclear reactor. U-10 wt.%Mo alloy powders were prepared directly by hydride-milling-dehydride process without γ phase to α phase transformation under long time heat treatment, the powders were studied by XRD and SEM. During absorb-desorb hydrogen cycle, the absorbed hydrogen quantity of U-10 wt.%Mo alloy increased with the cycle number increasing, after eight cycles, the absorbed hydrogen quantity reached a stable value, and absorbed hydrogen was saturated in alloy. U-10 wt.%Mo alloy hydride was milled in argon atmosphere, then, alloy hydride were heated to desorb the absorbed hydrogen at 600 °C, after these processes, U-10 wt.%Mo alloy powders were obtained. XRD results show that U-10 wt.%Mo alloy powders was still γ phase, its indicated that during preparation, the alloy was always body centered cubic structure, phase transformation process did not exist. SEM observation showed that the particle shape of U-10 wt.%Mo alloy powders was nonuniform, but particle size was less than 50 μm, some were below 10 μm.  相似文献   

2.
Vacuum plasma etching of 1 wt% La2O3 doped tungsten alloy surfaces were carried out to refine the surface morphology for enhancing its bonding characteristics with copper for fusion reactor components. Three different gas compositions containing argon with zero, 14.3 and 25 vol% hydrogen were used to carry out the plasma etching from 30 to 120 s on the given samples. Mitutoyo surface roughness (Ra) measurement, FORM TALYSURF and scanning electron microscopy (SEM) were employed to measure the changes in the surface roughness. Plasma etching with 14.3 vol% hydrogen mixture was found to be the best in micro-roughening the alloy surface. The maximum increase of 44% in Ra value was obtained with this gas mixture, when etched for 90 s.  相似文献   

3.
The present paper reports the influence of growth conditions on the characteristics of (TiVCr)N coatings prepared by dc reactive magnetron sputtering at various N2-to-total (N2 + Ar) flow ratios, RN. The crystal structures, microstructure, and mechanical, electrical and optical properties under the RN were characterized. Results indicate that the TiVCr alloy and nitride coatings exhibited a single body-centered cubic type (BCC) and a face-centered cubic (FCC) solid solution structure, respectively. As the RN increases, the preferred orientation (TiVCr)N coatings changed to (2 0 0). The grain size also had a significant increase. The microstructure of the coatings obviously changed from a porous to a compact and dense columnar structure. Accordingly, the physical properties of the coatings were improved due to the densification of the structure. The hardness of the (TiVCr)N was enhanced to about 15 GPa, and the electrical resistivity was lowered to 10,000 μΩ-cm.  相似文献   

4.
In the present work, we study the oxidation behaviour of NbON multilayer films. The films were deposited by DC magnetron sputtering with a reactive gas pulsing process. The nitrogen flow was kept constant and the oxygen flow was pulsed. Pulse durations of 10 s produced multilayered coatings with a period of λ = 10 nm. Three different films with increasing duty cycles have been deposited.Rutherford backscattering spectroscopy (RBS) was used to study the chemical composition variations at different annealing temperatures (as-deposited, 400 °C, 500 °C and 600 °C) combined with X-ray diffraction (XRD) to identify the crystalline phases formed. At 400 °C, for all films a very thin layer starts to form at the surface with enhanced O concentration. The composition of the deeper part of the samples remains unchanged. At 500 °C, the oxide scale grows, encompassing about half the film thickness. At 600 °C, the process is finished and a single layer is formed with reduced Nb and increased O concentration. Fourier-transformation infrared spectroscopy (FTIR) results confirmed the increase of this surface oxidation, while XRD revealed that crystallization of Nb2O5 occurs at 600 °C.  相似文献   

5.
The effects of composition and structure on gasochromic coloration of tungsten oxide films for hydrogen have been investigated. Tungsten oxide films with various O/W atomic ratios from 1.5 to 3.0 are prepared using a reactive rf magnetron sputtering from a tungsten target at different oxygen partial pressures. The films were deposited on quartz and carbon substrates at 200 °C. The O/W atomic ratio and crystallographic structure of the films were determined by Rutherford backscattering spectroscopy and X-ray diffraction. The gasochromic properties of the films were examined by use of optical transmittance in exposure in 1% H2/Ar atmosphere. The stoichiometric WO3 film with amorphous structure resulted in superior gasochromic coloration. The decrease in gasochromic performance was caused by non-stoichiometric WO3 films with amorphous structure or stoichiometric WO3 films crystallized with post-annealing at temperatures higher than 300 °C in air. It suggests that the gasochromic coloration of tungsten oxide films for hydrogen is strongly influenced by the composition and structure.  相似文献   

6.
We have studied electronic and atomic structure modifications of Cu3N films under 100 keV Ne and 100 MeV Xe ion impact. Cu3N films were prepared on R(11-2 surface)-cut-Al2O3 substrates at 250 °C by using a RF-magnetron sputter deposition method. X-ray diffraction (XRD) shows that unirradiated films are polycrystalline with (1 0 0) orientation of cubic structure. We find that the electrical resistivity (∼10 Ω cm before ion impact) decreases by more than two orders of magnitude after the Ne impact at a fluence of ∼1013 cm−2, where no Cu phase separation is observed. For further ion impact (larger than ∼1015 cm−2), XRD shows Cu diffraction peak (Cu phase separation), and the resistivity decreases further (three orders of magnitude). Decomposition and phase separation are discussed based on these results, as well as temperature dependence of the resistivity and optical absorption. The results of 100 MeV Xe ion impact are compared with those of Ne ion impact.  相似文献   

7.
Titanium-nickel thin films have been deposited on float glass substrates by ion beam sputtering in 100% pure argon atmosphere. Sputtering is predominant at energy region of incident ions, 1000 eV to 100 keV. The as-deposited films were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). In this paper we attempted to study the surface morphology and elemental composition through AFM and XPS, respectively. Core level as well as valence band spectra of ion-beam sputtered Ti-Ni thin films at various Ar gas rates (5, 7 and 12 sccm) show that the thin film deposited at 3 sccm possess two distinct peaks at binding energies 458.55 eV and 464.36 eV mainly due to TiO2. Upon increasing Ar rate oxidation of Ti-Ni is reduced and the Ti-2p peaks begin approaching those of pure elemental Ti. Here Ti-2p peaks are observed at binding energy positions of 454.7 eV and 460.5 eV. AFM results show that the average grain size and roughness decrease, upon increasing Ar gas rate, from 2.90 μm to 0.096 μm and from 16.285 nm to 1.169 nm, respectively.  相似文献   

8.
A middle-frequency magnetron sputtering system was designed and constructed for GaN growth, in which a pair of back cooled pool-shaped twin magnetrons were used for Ga metal targets. GaN films were prepared using this system under various gas pressure (0.5-3.0 Pa) in a mixture of N2 and Ar with N2/Ar ratio of 6:1. X-ray diffraction showed that the GaN films had a strong (0 0 0 2) orientation, and the film deposited at 1.5 Pa had two more weak peaks attributed to and . The full width at half maximum (FWHM) of the (0 0 0 2) peak for the GaN film deposited at 1.5 Pa and 0.5 Pa is ∼721 and ∼986 arcsec, respectively. The deposition rate was in the range of 43.5-87.8 nm/min and was mainly influenced by the deposition pressure. The films deposited at higher pressures are columnar in structure. A root-mean-square roughness of 4.4 nm was obtained from the atomic force microscopy (AFM) surface morphology of the film deposited at 0.5 Pa.  相似文献   

9.
Indium oxide thin films deposited by spray pyrolysis were irradiated by 100 MeV O7+ ions with different fluences of 5 × 1011, 1 × 1012 and 1 × 1013 ions/cm2. X-ray diffraction analysis confirmed the structure of indium oxide with cubic bixbyite. The strongest (2 2 2) orientation observed from the as-deposited films was shifted to (4 0 0) after irradiation. Furthermore, the intensity of the (4 0 0) orientation was decreased with increasing fluence together with an increase in (2 2 2) intensity. Films irradiated with maximum fluence exhibited an amorphous component. The mobility of the as-deposited indium oxide films was decreased from ∼78.9 to 43.0 cm2/V s, following irradiation. Films irradiated with a fluence of 5 × 1011 ions/cm2 showed a better combination of electrical properties, with a resistivity of 4.57 × 10−3 Ω cm, carrier concentration of 2.2 × 1019 cm−3 and mobility of 61.0 cm2/V s. The average transmittance obtained from the as-deposited films decreased from ∼81% to 72%, when irradiated with a fluence of 5 × 1011 ions/cm2. The surface microstructures confirmed that the irregularly shaped grains seen on the surface of the as-deposited films is modified as “radish-like” morphology when irradiated with a fluence of 5 × 1011 ions/cm2.  相似文献   

10.
Changes in the composition and crystalline structure of gasochromic tungsten oxide films resulting from the incorporation of hydrogen were investigated; the oxide films were prepared by reactive RF magnetron sputtering on SiO2 and glassy carbon substrates simultaneously. X-ray diffraction analysis of the deposited films at 600 °C showed a uniaxial oriented structure in the (0 1 0) plane of monoclinic WO3 for both substrates. The elastic recoil detection analysis (ERDA) and Rutherford backscattering spectroscopy (RBS) for the films on glassy carbon revealed that the hydrogen impurity was uniformly distributed up to a concentration of 0.24 H/W. The Pd-coated films on SiO2 turned blue when they were exposed to a mixture of Ar and 5% H2 gases. When the sample became colored, the hydrogen concentration in the film increased to 0.47 H/W and the crystalline structure of the film changed from monoclinic to tetragonal. These results indicated that the gasochromic coloration of the tungsten oxide films coincided with incorporation of hydrogen atoms into the crystalline lattice, corresponding to the formation of hydrogen tungsten bronze (HxWO3).  相似文献   

11.
The characterization of nitridated steel samples, in special the depth profile of nitrogen, aims to help improving the quality of the surface and to increase the durability of the steel pieces. In this work we used ERDA and NRA to determinate the profile of nitrogen in different sets of stainless steel samples. An incident beam of 35Cl of 56 MeV was used for ERDA analysis of a first set of samples. Results indicated an homogeneous distribution for most of the identified elements, with atomic nitrogen concentrations around 2% in the analyzed depth range (0.2 μm) and the presence of thin films on the surface (about 50 × 1015 at/cm2), one of C and the other of iron oxide. In a second set of samples, 4.43 MeV gamma rays produced from 15N(H,αγ)12C reaction, using an external proton beam of 1.3 MeV, were used to quantify nitrogen concentration. N concentrations of about 0.47% were obtained comparing the gamma production rate of the samples with a referenced material (Stainless steel CRM298 - 0.236% of N in mass) irradiated in the same conditions. Also PIXE analyses were done on both sets of samples in order to identify main elements in the matrix.  相似文献   

12.
Germanium nanoparticles embedded in SiO2 matrix were prepared by atom beam sputtering on a p-type Si substrate. The as-deposited films were annealed at temperatures of 973 and 1073 K under Ar + H2 atmosphere. The as-deposited and annealed films were characterized by Raman, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Rutherford backscattering spectrometry was used to quantify the concentration of Ge in the SiO2 matrix of the composite thin films. The formation of Ge nanoparticles were observed from the enhanced intensity of the Ge mode in the Raman spectra as a function of annealing, the appearance of Ge(3 1 1) peaks in the X-ray diffraction data and the Ge vibrational mode in the FTIR spectra. We have irradiated the films using 100 MeV Au8+ ions with a fluence of 1 × 1013 ions/cm2 and subsequently studied them by Raman and FTIR. The results are compared with the ones obtained by annealing.  相似文献   

13.
Plasma immersion ion implantation (PIII), using bias voltages of 5, 10, 15 and 20 kV in an argon plasma and fluences in the range of 2 × 1014-2 × 1016 ions/cm2, was applied to 100 nm polystyrene films coated on silicon wafer substrates. The etching kinetics and structural changes induced in the polystyrene films were investigated with ellipsometry, Raman and FTIR spectroscopies, optical and scanning electron microscopies, atomic force microscopy and contact angle measurements. Effects such as carbonisation, oxidation and cross-linking were observed and their dependence on the applied bias voltage is reported. Variations in the etching rate during the PIII process and its relationship to carbonisation of the modified surface layer are explored.  相似文献   

14.
Corrosion kinetics of NZ2 alloy were investigated after autoclave treatments in 360 °C/18.6 MPa lithiated water and 400 °C/10.3 MPa steam. The crystal structure and the residual stress of oxide films of NZ2 alloys after corroded in both conditions were investigated by XRD method. The kinetics analysis indicates that the resistance of NZ2 alloy treated in 360 °C lithiated water is higher than that treated in 400 °C steam. The crystal structure analysis shows that the content of tetragonal t-ZrO2 in the oxide films decreases smoothly and the content of monoclinic m-ZrO2 increases with the duration of corrosion time, independent of the kinetics transition. Stress measurements show that high compressive stresses were developed in the oxide layers. Furthermore, the transitions of kinetics can be associated with the sudden decrease of macroscopic compressive stresses in the oxide films. The higher t-ZrO2 content is, the higher compressive stress in the oxide film is, the lower is the corrosion rate. Therefore it is considered that t-ZrO2 is mainly stabilized by the macroscopic compressive stresses in the oxide films. In addition, local stresses in the oxide films, grain size and the oxygen vacancies play an important role in the t-ZrO2 stabilization.  相似文献   

15.
The effects of composition and structure on hydrogen incorporation in tungsten oxide films were investigated. Films were deposited on carbon and SiO2 substrates using a reactive sputtering by varying the substrate temperature from 30 to 600 °C in argon and oxygen mixture. The films were characterized using X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), elastic recoil detection analysis (ERDA) and Raman scattering. XRD patterns showed amorphous structure in the films deposited below 400 °C and (0 1 0) oriented monoclinic WO3 in the films deposited beyond 400 °C. The results of RBS and ERDA indicated that hydrogen concentration in the amorphous films increased from 0.1 to 0.7 H/W with changing the composition from WO0.25 to WO3. The hydrogen concentration in WO3 films decreased to 0.4 H/W with increasing the substrate temperature during deposition. The Raman spectra of the WO3 films revealed that decreasing of W6+O terminals was related to decreasing of the hydrogen concentration. It was considered that the incorporated hydrogen in tungsten oxide films was bonded at the end of W6+O terminals.  相似文献   

16.
Corrosion tests of 2000 h duration are conducted on tubes consisting of the steel T91 in liquid metal loops containing eutectic lead-bismuth melt with 10−6 wt% oxygen in solution. The experiments include tests at temperatures of 480-600° C, at liquid metal flow velocities of 1, 2 and 3 m/s and under mechanical stress due to an internal pressure of 15 MPa. The surface of tubes exposed to 600 °C and to different flow velocities are coated with a FeCrAlY alloy to examine its suitability as a protective coating for high loaded parts like cladding tubes. The coating was remelted by an electron pulse of GESA to homogenize the coating and improve its bonding to the bulk material. In all of the tests no liquid metal attack was observed. As received steel specimens developed multilayer oxide scales of a thickness increasing with temperature and internal pressure, while coated tubes had a thin protective alumina scale. Flow velocities above 2 m/s permanently removed formed magnetite at 550 °C. No influence of the flow velocity was observed for the coated surfaces which keep their stable thin alumina scale. The internal pressure of 15 MPa caused a strain of 0.7% in the tube wall, which obviously increases iron diffusion and enhances magnetite formation.  相似文献   

17.
Thin films of zinc oxide (ZnO), having different thicknesses were prepared by pulsed laser deposition (PLD) technique onto silicon Si(1 1 1) and quartz (SiO2) substrates at different partial pressures of oxygen. Rutherford back scattering (RBS) analysis was carried out in order to investigate effect of deposition parameters on thickness of films. Quality of the films was investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses. The thickness of the film was found to increase with oxygen partial pressure for both Si and SiO2 substrates.  相似文献   

18.
Titanium nitride thin films were deposited on Si(1 0 0) substrates by using a low energy (2.3 KJ) Mather-type plasma focus device. The composition of the deposited films was characterized by X-ray diffraction (XRD). The crystallite size has strong dependence on the numbers of focus shots. The crystallinity of TiN thin films is found to increase with increasing the number of focus shots. The effect of different number of focus shots on micro structural changes of thin films was characterized by Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM). SEM results showed net-like structure for film deposited for 15 numbers of shots, which are elongated grains of Si3N4 in amorphous form embedded into TiN crystals. The average surface roughness was calculated from AFM images of the thin films. These results indicated that the average surface roughness increased for films deposited with increased number of focus shots. The least crystallite size and roughness are observed for film deposited with 25 focus shots.  相似文献   

19.
We have investigated morphology change of FePt nanogranular films (FePt)47(Al2O3)53 under irradiation with 210 MeV Xe ions. Here, electron tomography technique was extensively employed to clarify three-dimensional (3D) structure in irradiated specimens, in addition to conventional transmission electron microscopy (TEM) techniques such as bright-field observation and scanning TEM energy dispersive X-ray spectroscopy (STEM-EDX) analysis. The ion irradiation induces the coarsening of FePt nanoparticles with elongation along the beam direction. Electron tomography 3D reconstructed images clearly demonstrated that when the fluence achieves 5.0 × 1014 ions/cm2, well-coarsened FePt balls have been formed on the irradiated surface, and the particles in the film interior have been deformed into rods along the ion trajectory. The alloy particles become inhomogeneous in composition after prolonged irradiation up to 1.0 × 1015 Xe ions/cm2. The particle center is enriched with Pt, while Fe is slightly redistributed to the periphery.  相似文献   

20.
Tungsten has been considered as the primary candidate plasma-facing materials (PFM) for the EAST device. Three actively cooled W/Cu mock-ups with an interlayer made of tungsten-copper alloy (1.5 mm) were designed and manufactured. The tungsten armors, pure sintered tungsten plate (1 mm) and plasma-sprayed tungsten coatings (0.3 and 0.9 mm), were bonded to the interlayer by brazing and depositing respectively. All mock-ups can withstand high heat flux up to 5 MW/m2 and no obvious failure was found after tests. The thermal performance experiments and microstructure analyses indicated the structure of mock-ups possess good thermal contact and high heat transfer capability. WCu alloy as an interlayer can largely reduce the stress due to the mismatch and improve the reliability. The mock-up with 0.9 mm coating had the highest surface temperature than the other two mock-ups, delaminations of this mock-up were found in the near surface by SEM. The primary results show that pure sintered tungsten brazed to WCu alloy is a possible way, and thick plasma-sprayed coating technique still need to be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号