首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CdTe polycrystalline thin films possessing hexagonal phase regions are obtained by spray deposition in presence of a high electric field. Thin film samples are irradiated with 100 MeV Ag ions using Pelletron accelerator to study the swift heavy ion induced effects. The ion irradiation results in the transformation of the metastable hexagonal regions in the films to stable cubic phase due to the dense electronic excitations induced by beam irradiation. The phase transformation is seen from the X-ray diffraction patterns. The band gap of the CdTe film changes marginally due to ion irradiation induced phase transformation. The value changes from 1.47 eV for the as deposited sample to 1.44 eV for the sample irradiated at the fluence 1×1013 ions/cm2. The AFM images show a gradual change in the shape of the particles from rod shape to nearly spherical ones after irradiation.  相似文献   

2.
Swift heavy ion irradiation has been successfully used to modify the structural, optical, and gas sensing properties of SnO2 thin films. The SnO2 thin films prepared by sol-gel process were irradiated with 75 MeV Ni+ beam at fluences ranging from 1 × 1011 ion/cm2 to 3 × 1013 ion/cm2. Structural characterization with glancing angle X-ray diffraction shows an enhancement of crystallinity and systematic change of stress in the SnO2 lattice up to a threshold value of 1 × 1013 ions/cm2, but decrease in crystallinity at highest fluence of 3 × 1013 ions/cm2. Microstructure investigation of the irradiated films by transmission electron microscopy supports the XRD observations. Optical properties studied by absorption and PL spectroscopies reveal a red shift of the band gap from 3.75 eV to 3.1 eV, and a broad yellow luminescence, respectively, with increase in ion fluence. Gas response of the irradiated SnO2 films shows increase of resistance on exposure to ammonia (NH3), indicating p-type conductivity resulting from ion irradiation.  相似文献   

3.
Ion irradiation is an effective method to control the morphology, size and distribution of metal nanoclusters in substrates. In this work, Ag nanoclusters embedded in silica by 200 keV Ag+ ion implantation were irradiated at room temperature with Ar+ ions at 200 keV and 500 keV to different fluences. After irradiation, a transmission electron microscopy (TEM) study revealed that nanovoids are formed in the larger Ag nanoclusters. With the increase of fluence and energy of the Ar+ ions, the number and average size of the nanovoids grow combining with increases in the average size of the larger Ag nanoclusters within a projected range. During the ion irradiation process, the electronic energy and nuclear energy loss of the Ar+ ions determine the size of the hollow Ag nanoclusters and the change of the size and distribution of Ag nanoclusters in silica, leading to changes in the optical absorption spectra.  相似文献   

4.
Single crystals of sapphire (Al2O3: Fe, Ti, Cr) were irradiated at room temperature with different fluence of 100 MeV Ni ions. Photoluminescence (PL) spectra of pristine and irradiated sapphires were recorded at room temperature under 2.8 eV blue excitation. A broad emission band consists of two bands centered at 516 nm corresponding to F2 defect center and 546 nm corresponding to defect center was observed. The intensity of these defect centers was found to vary with the fluence. defect center develops at low fluence reaching maximum at 5 × 1016 ions/m2 and finally decreasing at higher fluence. The behavior is interpreted in terms of creation of defect centers, their clustering and annihilation.  相似文献   

5.
Some effects on the vacuum ultraviolet optical bands (6-8 eV) produced by implanted Si, using multi-energies ranging from 320 to 35 keV energies to produce a layer of constant concentration in (Type III) silica, approximately 600 nm thick, have been measured. Based on two methods of analyzing the spectra as a function of implanted layer concentration; first, by subtracting the spectrum of an un-implanted sample from each spectrum of the implanted samples and second, subtracting the spectrum of one concentration from the spectrum of the next largest concentration, we have identified band maxima. In the case of the first subtraction the maxima are at ∼7.54, 7.7, and 7.92 eV. In the case of the second subtraction the maxima are at ∼7.5, 7.85, and 7.95 eV. These difference spectra show that the various states have differing rates of increase with increase in Si concentration. The absorption between 6 and 7 eV increases with increasing Si concentration indicating that there is/are a band or bands in this region of the spectra. Because all of the bands that are resolved increase with increasing Si concentration we attribute these bands to Si related electronic states. An estimate of the oscillator strengths of these bands is made by comparison of their peak absorption with that of the E′ optical band at 5.83 eV, = 0.14 ± 0.05, in the same samples. This comparison shows that all of the resolved bands between 6 and 8 eV have oscillator strengths equal to or larger than the E′ state, consistent with our assignment of the bands to Si related states. By comparing to the spectra from the Si implanted samples, the bands produced by radiation damage in an Ar implanted sample are between 7.3 and 8 eV bands are attributed to Si related states.  相似文献   

6.
4,4′-Dimethylbenzophenone (DMBP) single crystals were irradiated at room temperature and at liquid nitrogen temperature with 50 MeV Li3+ ions at fluences 1 × 1012 and 1 × 1013 ions/cm2. The dielectric constant and dielectric loss as a function of frequency of the applied ac field in the range from 20 Hz to 1 MHz and at temperatures ranging from 313 to 353 K were analyzed. The dielectric constant decreases with increase in frequency for all the temperatures. The dielectric constant and dielectric loss increase with fluence. Optical absorption was measured at different conditions. UV-Vis studies reveal the decrease in bandgap. The unirradiated as well as irradiated crystals were characterized by photoluminescence. Ion-induced changes were also studied with respect to their mechanical response using the Vicker’s microhardness technique and parameters including fracture toughness, brittleness index and yield strength are calculated.  相似文献   

7.
E-beam evaporated aluminum oxide films were irradiated with 120 MeV swift Au9+ ions in order to induced nanostructure formation. Atomic force microscope (AFM) results showed the formation of nanostructures for films irradiated with a fluence of 1 × 1013 ions cm−2. The particle size estimated by section analysis of the irradiated film was in the range 25-30 nm. Glancing angle X-ray diffraction (GAXRD) revealed the amorphous nature of the films. Two strong Photoluminescence (PL) emission bands with peaks at ∼430 nm and ∼645 nm besides a shoulder at ∼540 nm were observed in all irradiated samples. The PL intensity is found to increase with increase of ion fluence.  相似文献   

8.
A study of the effects of ion irradiation on the surface mechanical behavior and shrinkage of organic/inorganic modified silicate thin films was performed. The films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. The sol viscosity and the spin velocity were adjusted so that the films produced had a final thickness ranging from 580 to 710 nm after heat treatment. The ion species and incident energies used were selected such that the projected ion range was greater than the film thickness, resulting in fully irradiated films. After heat treatment at 300 °C for 10 min, the films were irradiated with 125 keV H+, 250 keV N2+ and 2 MeV Cu+ ions with fluences ranging from 1 × 1014 to 1 × 1016 ions/cm2. Both hardness and reduced elastic modulus were seen to exhibit a monotonic increase with fluence for all three ion species. Also, H loss was found to increase monotonically with increase in fluence, while the film thickness was found to decrease with increase in fluence.  相似文献   

9.
Optical absorption spectra of neutron irradiated (1021 n/m2 and 1022 n/m2) KU1 quartz glass samples have been measured. The effects of post-irradiation isochronal thermal annealing, up to 850 °C, have been investigated. The general effect of the isochronal annealing is a decrease in the optical absorption bands as the temperature increases. Optical absorption bands have been identified with known defects from the literature, and their concentration temperature dependence has been analyzed. While the annealing curves of the E′ and non-bridging oxygen hole centres (NBOHC) are similar, that corresponding to oxygen deficiency centres (ODC(II)) is quite different suggesting that the recombination of E′ and NBOHC is part of the same process whereas the recombination of ODC is controlled by the presence of another undetected defect.  相似文献   

10.
Photoconduction behaviour of 75 MeV oxygen ion irradiated (Fluences: 1.8 × 1011, 1.8 × 1012 and 1.8 × 1013 ions/cm2) kapton-H polyimide film in the visible region has been investigated at different temperatures ranging 400-2500 °C and at various electric fields ranging 40-600 kV/cm. A photoinduced exciton formation is the major source for providing charge carriers through thermolization and field-assisted dissociation processes. An attempt has been made to fit the field dependence of the steady state photocurrent to one of the several possible conduction mechanisms. In the high and low fluence (1.8 × 1013 and 1.8 × 1011 ions/cm2) irradiated samples there exists a possibility of Poole-Frankel type of photoconduction mechanism, whereas at intermediate fluence (1.8 × 1012 ions/cm2) a Schottky type photoconduction mechanism may be operative. The log Ips versus 1/T plots consist of two straight lines with a knee point around 800-1000 °C. The activation energy estimated from the slope of these lines is field dependent varying from 0.40 to 0.73 eV and 0.18 to 0.23 eV above and below the knee point, respectively. This indicates the presence of more than one type of trapping levels in irradiated kapton-H polyimide.  相似文献   

11.
The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO nanocrystallites deposited into porous silicon (PS) templates by the sol-gel process was studied. The ZnO/PS nanocomposites were irradiated using 120 MeV Au ions at different fluences varying from 1 × 1012 to 1 × 1013 ions/cm2. The intensity of the X-ray diffraction peaks is suppressed at the high fluence, without evolution of any new peak. The PL emission from PS around 700 nm is found to decrease with increase in ion fluence, while the PL emission from deep level defects of ZnO nanocrystallites is increased with ion fluence. At the highest fluence, the observation of drastic increase in PL emission due to donor/acceptor defects in the region 400-600 nm and suppressions of XRD peaks could be attributed to the defects induced structural modifications of ZnO nanocrystallites.  相似文献   

12.
NiO nanoparticle films (200 nm thick) grown on Si substrates by pulsed laser deposition method were irradiated by 200 MeV Ag15+ ions. The films were characterized by glancing angle X-ray diffraction, atomic force microscopy and optical absorption spectroscopy. Though electronic energy loss of 200 MeV Ag ions in NiO matrix was higher than the threshold electronic energy loss for creation of columnar defects, films remained crystalline with the initial fcc structure even up to a fluence of 5 × 1013 ions cm−2, where ion tracks are expected to overlap. Irradiation however modified the microstructure of the NiO films considerably. The grain size decreased with increasing ion fluence, which led to reduced surface roughness and increased optical band gap due to quantum confinement. These results correlate well with variation of the power spectral density exponent with ion fluence, which indicate that at high ion fluences, the evolution of surface morphology is governed by surface diffusion.  相似文献   

13.
The electronic structures of perfect crystals of barium molybdate (BaMoO4) and of crystals containing F and F+ color centers are studied within the framework of the fully relativistic self-consistent Dirac-Slater theory by using the numerically discrete variational (DV-Xα) method. The calculated results suggest that the donor energy level of the F center as well as F+ center is located within the band gap. The respective optical transition energies are 1.86 eV and 2.105 eV corresponding to the wavelength of the absorption band of 668 nm and 590 nm. It is therefore suggested that these bands are originate from the F and F+ centers in the crystal.  相似文献   

14.
A detailed investigation of the surface morphology of the pristine and swift heavy ion (SHI) irradiated La0.7Sr0.3MnO3 (LSMO) thin film using atomic force microscope (AFM) is presented. Highly c-axis oriented LSMO thin films were grown on LaAlO3 (1 0 0) (LAO) substrates by the pulsed laser deposition (PLD) technique. The films were annealed at 800 °C for 12 h in air (pristine films) and subsequently, irradiated with SHI of oxygen and silver. The incident fluence was varied from 1 × 1012 to 1 × 1014 ions/cm2 and 1 × 1011 to 1 × 1012 ions/cm2 for oxygen and silver ions, respectively. X-ray diffraction (XRD) studies reveal that the irradiated films are strained. From the AFM images, various details pertaining to the surface morphology such as rms roughness (σ), the surface rms roughness averaged over an infinite large image (σ), fractal dimension (DF) and the lateral coherence length (ξ) were estimated using the length dependent variance measurements. In case of irradiated films, the surface morphology shows drastic modifications, which is dependent on the nature of ions and the incident fluence. However, the surface is found to remain self-affine in each case. In case of oxygen ion irradiated films both, σ and DF are observed to increase with fluence up to a dose value of 1 × 1013 ions/cm2. With further increase in dose value both σ and DF decreases. In case of silver ion irradiated films, σ and DF decrease with increase in fluence value in the range studied.  相似文献   

15.
Ion irradiation damage experiments were performed at ∼80 K on polycrystalline samples of monoclinic, slightly sub-stoichiometric zirconia (ZrO1.98). Following irradiation with 150 keV Ne+ ions, the monoclinic phase was gradually replaced by a new phase. Transmission electron microscopy (TEM) observations in cross-sectional geometry and electron microdiffraction (μD) measurements revealed that the irradiated layer in a sample irradiated to a fluence of 5 × 1020 Ne/m2 is partially transformed to a higher symmetry phase of high crystallinity. This phase transformation is accompanied by reduction of the initial micron-sized, highly-twinned grain distribution, to a nano-phased grain structure. Grazing incidence X-ray diffraction (GIXRD) measurements revealed that the radiation-induced phase is a tetragonal polymorph of zirconia. This was verified by the existence of strong (1 0 1) diffraction maxima and weak (1 0 2) reflections (body-centered cell). Raman spectroscopy (RS) measurements were also performed in an attempt to corroborate GIXRD results obtained from the irradiated material. RS measurements in the confocal geometry agreed with GIXRD measurements, although RS was not as definitive as GIXRD. In addition to RS showing the existence of a band corresponding to a tetragonal structure at 262 cm−1, a new mystery band appeared at 702 cm−1 that increased in intensity as a function of irradiation fluence.  相似文献   

16.
We report damage creation and annihilation under energetic ion bombardment at a fixed fluence. MOCVD grown GaN thin films were irradiated with 80 MeV Ni ions at a fluence of 1 × 1013 ions/cm2. Irradiated GaN thin films were subjected to rapid thermal annealing for 60 s in nitrogen atmosphere to anneal out the defects. The effects of defects on luminescence were explored with photoluminescence measurements. Room temperature photoluminescence spectra from pristine sample revealed presence of band to band transition besides unwanted yellow luminescence. Irradiated GaN does not show any band to band transition but there is a strong peak at 450 nm which is attributed to ion induced defect blue luminescence. However, irradiated and subsequently annealed samples show improved band to band transitions and a significant decrease in yellow luminescence intensity due to annihilation of defects which were created during irradiation. Irradiation induced effects on yellow and blue emissions are discussed.  相似文献   

17.
We report here the physico-chemical changes brought about by high electronic energy deposition of gold ions in HCl doped polyaniline (PANI) thin films. PANI thin films were synthesized by in situ polymerization technique. The as-synthesized PANI thin films of thickness 160 nm were irradiated using Au7+ ion of 100 MeV energy at different fluences, namely, 5 × 1011 ions/cm2 and 5 × 1012 ions/cm2, respectively. A significant change was seen after irradiation in electrical and photo conductivity, which may be related to increased carrier concentration, and structural modifications in the polymer film. In addition, the high electronic energy deposition showed other effects like cross-linking of polymer chains, bond breaking and creation of defect sites. AFM observations revealed mountainous type features in all (before and after irradiation) PANI samples. The average size (diameter) and density of such mountainous clusters were found to be related with the ion fluence. The AFM profiles also showed change in the surface roughness of the films with respect to irradiation, which is one of the peculiarity of the high electronic energy deposition technique.  相似文献   

18.
Single crystals of sapphire (α-Al2O3) were irradiated at GANIL with 0.7 MeV/amu xenon ions corresponding to an electronic stopping power of 21 keV/nm. Several fluences were applied between 5 × 1011 and 2 × 1014 ions/cm2. Irradiated samples were characterized using optical absorption spectroscopy. This technique exhibited the characteristic bands associated with F and F+ centers defects. The F centers density was found to increase with the fluence following two different kinetics: a rapid increase for fluences less than 1013 ions/cm2 and then, a slow increase for higher fluences. For fluences less than 1013 ions/cm2, results are in good agreement with those obtained by Canut et al. [B. Canut, A. Benyagoub, G. Marest, A. Meftah, N. Moncoffre, S.M.M. Ramos, F. Studer, P. Thévenard, M. Toulemonde, Phys. Rev. B 51 (1995) 12194]. In the fluences range: 1013-1014 ions/cm2, the F centers defects creation process is found to be different from the one evidenced for fluences less than 1013 ions/cm2.  相似文献   

19.
We have investigated morphology change of FePt nanogranular films (FePt)47(Al2O3)53 under irradiation with 210 MeV Xe ions. Here, electron tomography technique was extensively employed to clarify three-dimensional (3D) structure in irradiated specimens, in addition to conventional transmission electron microscopy (TEM) techniques such as bright-field observation and scanning TEM energy dispersive X-ray spectroscopy (STEM-EDX) analysis. The ion irradiation induces the coarsening of FePt nanoparticles with elongation along the beam direction. Electron tomography 3D reconstructed images clearly demonstrated that when the fluence achieves 5.0 × 1014 ions/cm2, well-coarsened FePt balls have been formed on the irradiated surface, and the particles in the film interior have been deformed into rods along the ion trajectory. The alloy particles become inhomogeneous in composition after prolonged irradiation up to 1.0 × 1015 Xe ions/cm2. The particle center is enriched with Pt, while Fe is slightly redistributed to the periphery.  相似文献   

20.
Wurtzite GaN epilayers irradiated at room temperature with 308 MeV 129Xe35+ ions to fluences of 1 × 1013 and 3 × 1013 cm−2 have been studied by contact mode atomic force microscopy (AFM), high-resolution X-ray diffraction (HRXRD), micro-Raman scattering and photoluminescence (PL) spectroscopy. The AFM images showed that the surface of GaN films was etched efficiently due to the Xe ion irradiation. The initial step-terrace structure on GaN surface was eliminated completely at a fluence of 3 × 1013 cm−2. HRXRD and Raman results indicated that the Xe ion irradiation led to a homogenous lattice expansion throughout the entire ∼3 μm-thick GaN films. The lattice expansion as well as the biaxial compressive stress of the films was increasing with the increase of ion fluence. PL measurements showed that a dominant yellow luminescence band in the as-grown GaN films disappeared, but a blue and a green luminescence bands were produced after irradiation. Based on these results, the strong electronic excitation effect of 308 MeV Xe ions in GaN is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号