共查询到19条相似文献,搜索用时 46 毫秒
1.
针对现有中值滤波算法对于高密度噪声图像以及纹理细腻图像的边缘处理能力欠佳的缺陷,提出一种基于动态窗口的自适应中值滤波算法。该算法根据噪声点与周围信息的关联程度调整噪声点滤波值,从而更好地处理图像的细节部分。该算法中的自适应策略加强了滤波算法的去噪性能,使其对于含有任意噪声密度的图像也能很好地进行噪声滤除。通过仿真分析,新算法对于细节丰富的图像以及高密度噪声的图像滤波效果良好,有效地提高了图像的峰值信噪比,去噪效果相比其他方法更加优秀。 相似文献
2.
周华 《计算机应用与软件》2011,28(7)
针对中值滤波算法对于高密度噪声图像以及纹理细腻图像的边缘处理能力欠佳的缺陷,提出一种基于动态窗口的自适应中值滤波算法.新算法根据噪声点与周围信息的关联程度将噪声点滤波值进行调整,从而更好地处理图像的细节部份.新算法中的自适应策略加强了滤波算法的去噪性能,使其对于含有任意噪声密度的图像也能很好地进行噪声滤除.通过仿真分析,新算法对于细节丰富的图像以及高密度噪声的图像滤波效果良好,有效地提高图像的峰值信噪比,其去噪效果相比其他方法更加优秀. 相似文献
3.
在图像的获取或传输过程中可能会受到一些干扰从而产生椒盐噪音,产生的噪声图像失去了一些特征要素。传统的中值滤波方法对椒盐噪音有一定的滤除作用,但当椒盐噪声的密度较大时滤波效果会变差,现有的自适应中值滤波算法对高密度下的椒盐噪声的滤除效果有了很大的提升,但仍难以保留细节。对此本文提出了一种适用于高密度椒盐噪声的自适应中值滤波改进算法,该算法将噪声点和信号点分别进行处理,之后进行模糊逻辑图像边缘检测,对模糊边缘像素点进行二次自适应中值滤波处理。该算法具有结构简单,通用性强,运行速度快等特点。实验结果表明,该算法对高密度的椒盐噪声具有很好的滤波效果。 相似文献
4.
中值滤波是一种简单而重要的处理椒盐噪声图像的方法,但传统的中值滤波只适用于弱噪声的情况,对于强椒盐噪声并不适用.本文在中值滤波的基础上,提出了一种自适应的二次中值滤波算法,该算法具有实现过程简单,运算复杂度低,自适应性强的特点.经过实验表明:该方法对强椒盐噪声图像具有良好的处理效果,特别适用于噪声大于50%的高强度椒盐噪声图像. 相似文献
5.
为了在各种噪声密度条件下,都能恢复椒盐噪声污染的图像并能很好地保持图像的细节,提出了一种基于改进的非对称裁剪中值滤波算法清除椒盐噪声.该方法首先对噪声点进行检测,然后基于滑动窗口中噪声点的数目来自适应改变窗口的大小,最后应用一种改进的非对称裁剪中值滤波器计算中值,结果显示该算法各项指标都要优于其它算法.实验结果表明了在各种的噪声密度条件下,该算法能较好地清除椒盐噪声,而且也能较好地保护图像细节,比现存的一些中值滤波算法清除椒盐噪声的效果更加优秀 相似文献
6.
基于方向中值的图像椒盐噪声检测算法 总被引:1,自引:0,他引:1
为了在有效去除椒盐噪声的同时最大限度地保持图像的细节,针对现有应用于椒盐噪声检测算法的优缺点,提出一种基于方向中值的椒盐噪声两级检测算法。算法通过初级全局噪声检测将图像分为可疑噪声点与信号点,二级检测中算法以可疑噪声点为中心在5×5的检测窗口中设置9个方向检测区,通过可疑噪声点灰度值与检测区像素点灰度中值的比较最终确定噪声点的位置。算法中的可行性漏检在保证图像质量的同时减少了后续处理的像素数,同时,算法具有较低的噪声误检率,保持了图像的细节。仿真实验结果验证了算法的有效性。 相似文献
7.
针对传统中值滤波算法去除高密度椒盐噪声能力的不足,提出了一种新的改进算法.该算法首先采用2级噪声检测方法对图像中的信号点和噪声点进行标识,然后对检测出的噪声点利用改进的中值滤波算法进行处理,而对信号点则保留其灰度值不变.实验结果表明,该算法能在有效去除噪声的同时很好地保留图像细节,相比于传统中值滤波及其它改进中值滤波算法,该算法获得的去噪后的图像具有更好的客观评价指标和主观视觉效果. 相似文献
8.
改进的自适应中值滤波算法 总被引:1,自引:0,他引:1
自适应中值滤波算法能有效地滤除图像的脉冲噪声,但是,随着噪声密度的增大,算法的滤波性能递减.当前对中值滤波算法进行改进的算法,也存在着相应的局限性.针对中值滤波算法的局限性,提出了改进的自适应中值滤波算法.算法根据滤波窗口的灰度极值进行噪声检测.对噪声点,用滤波窗口的灰度中值代替.如果中值为噪声点,则自适应地增大滤波窗口以取新的中值.如果窗口增大到允许的最大尺寸时,中值依然为噪声点,则取滤波窗口中除灰度极值外的其他像素的灰度均值.对标准图像和医学图像进行仿真实验,实验结果和数据证明,随着噪声密度的增大,标准的自适应中值滤波算法的滤波性能递减;改进的自适应中值滤波算法的滤波性能依然良好,在有效滤除噪声的同时,很好地保持图像的边缘和细节部分. 相似文献
9.
去除彩色图像噪声一直是图像预处理研究的重要内容。传统的矢量中值滤波是一种有效去除彩色图像椒盐噪声的方法,但传统的矢量中值滤波方法只适用于弱噪声的情况,对于强椒盐噪声并不适用。许多改进的矢量中值滤波被提出,但对强椒盐噪声图像效果并不好。文章在传统的矢量中值滤波的基础上,提出了改进的矢量中值滤波算法,该算法可以有效去除高强度椒盐噪声,不会产生新的颜色,很好地保持了图像边缘和细节,而且具有算法简单,自适应性强的特点。经过实验表明:该方法对于强度在10%~80%的椒盐噪声彩色图像具有良好的处理效果。 相似文献
10.
针对图像中椒盐噪声点的准确检测与去除问题,提出一种基于斜率的自适应中值滤波算法。该算法首先用n×n(n为大于或等于3的奇数)的模板作用于待检测图像的每一个像素,若当前像素的灰度值为其邻域内所有像素灰度值的极值,判断此点为准噪声点;再利用像素灰度值序列中两段子序列斜率的差值及模板区域内像素灰度值的均值自适应地判断准噪声点是否为真正的噪声点;最后对被判定为噪声的像素做中值滤波处理。与标准中值滤波方法相比,该方法加强了噪声检测的条件。实验结果表明,该算法具有较好地去除椒盐噪声和保留细节的效果。 相似文献
11.
针对传统中值滤波算法的优缺点,提出了一种基于相似度函数的自适应加权中值滤波算法。该算法首先通过噪声检测确定图像中的噪声点,然后根据窗口内噪声点的个数自适应地调整滤波窗口的尺寸,再根据相似度大小,巧妙地将滤波窗口内各个像素点按一定的规律自适应地分组并赋予每组像素点相应的权重,最后采用加权中值滤波算法对检测出的噪声点进行滤波处理。计算机模拟实验结果表明:该算法既能有效地滤除噪声,又能较好地保护图像细节,滤波性能比传统中值滤波算法更理想。 相似文献
12.
13.
武英 《计算机工程与应用》2010,46(23):206-208
提出了基于噪声检测的开关矢量中值滤波,在噪声检测阶段根据噪声的定义将标量检测和矢量检测结合在一起,有效地提高噪声检测的准确性;由于采用开关矢量滤波,滤波过程只对在标量预检测中被检测出的噪声像素进行,可大大减少计算量并能较好地保持图像的细节和边缘,而且在滤波过程中不会出现新的颜色。 相似文献
14.
改进的自适应中值滤波算法 总被引:4,自引:0,他引:4
中值滤波窗口大小影响滤波器性能,3×3滤波窗口可以很好地保持图像细节。提出一种新的自适应中值滤波方法。将3×3窗口中心的极值点作为候选噪声点,若候选噪声点仍然是7×7窗口的极值点,则该点即是噪声点。若以噪声点为中心的3×3滤波窗口的中值不是噪声,则噪声用中值替换。重复以上过程,直到没有噪声点被替换。如果图像中仍然存在大的噪声团块,则噪声用相邻的三个信号点的灰度均值替换。实验结果表明,该方法能够有效去除脉冲噪声,并在抑制噪声的同时很好地保护图像的细节。 相似文献
15.
16.
在标准中值滤波算法的基础上提出了基于聚类方法的滤波算法,该算法除了考虑当前像素和邻域组成的序列的统计特征之外,还考虑到了该序列的结构性特征。首先将该序列分成两类,然后计算当前像素所在的类别的中值作为滤波器的输出。该算法还设计了高低两个阈值来界定中值和均值之间的绝对差的范围,当绝对差属于不同的范围时采用不同的处理方法。最后使用了一些典型例子来说明该方法的去噪效果比标准的方法要更好一些。 相似文献
17.
针对传统中值滤波算法不能很好地保护图像细节以及受严重噪声污染时性能急剧下降的情况,提出了一种新型的自适应模糊中值滤波算法。通过比较滤波窗口内像素点的灰度值与像素点灰度值的均值定义了模糊滤波系数,利用此模糊滤波系数对滤波方法进行加权,得到一种加权中值滤波器。通过对小窗口内的灰度值不等于最大灰度值和最小灰度值的像素点的检测自适应调整窗口大小,对超过设定的最大窗口的情况,噪声点的灰度值用四个相邻的已处理的像素点灰度值的均值进行替换。仿真结果表明,新算法具有较好的细节保护能力和较强的去除噪声能力。 相似文献
18.
在分析了自适应算法和中心加权算法的原理和优势后,提出了一种改进的自适应加权中值滤波(IAWMF)算法。采用扩展边缘的方式,使原图像的所有像素点能够用噪声检测因子进行噪声检测,对含有噪声的图像采用自适应窗口(N ×N)的中心加权算法进行滤波,可以有效降低邻域噪声点对滤波图像质量的影响。仿真结果表明:改进算法在高浓度椒盐噪声条件下获得的实验效果峰值信噪比( PSNR)、均值平方误差(MAE)、均值绝对误差(MSE)显著优于其他算法,在降噪和保持细节中取得很好的平衡。 相似文献
19.
提出了一种新的自适应中值滤波算法,首先使用3×3窗口在图像上滑动,计算该窗口中心像素的块均匀度,并与整幅图像的块均匀度比较,自适应地确定窗口中心像素是否为噪声点;然后统计3×3窗口中噪声点的个数,自适应地调整滤波窗口大小,最后自适应地计算权值,并采用改进的加权中值滤波方法对噪声点进行逐点滤波。该方法既能有效地去除图像噪声点,又能较好地保持图像细节部分。通过对实验结果进一步分析,该方法比均值滤波和中值滤波的性能更加优化,在椒盐噪声大小相同的情况下,PSNR值提高了9.4~12.7。评价结果与目视效果吻合良好,为图像去除噪声提供了一个新的途径。 相似文献