共查询到19条相似文献,搜索用时 93 毫秒
1.
含维变异算子的量子粒子群算法 总被引:2,自引:0,他引:2
针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种新的量子粒子群优化算法--含维变异算子的量子粒子群算法(QPSODMO).计算每一维的收敛度,以一定的概率对收敛度最小的维进行变异,让所有粒子在该维上的位置重新均匀分布在可行区域上.对测试函数所做的对比实验表明,所提出的QPSODMO增强了全局搜索能力,克服了PSO算法易于收敛到局部最优的缺点,也优于原始的量子粒子群算法. 相似文献
2.
带自变异算子的粒子群优化算法 总被引:2,自引:1,他引:2
针对粒子群优化算法中出现的早熟收敛问题,论文提出了一种带自变异算子的粒子群优化算法。该算法在运行过程中增加了随机变异算子,通过对当前最佳粒子进行随机变异来增强粒子群优化算法跳出局部最优解的能力。对几种典型函数的测试结果表明,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟收敛问题。 相似文献
3.
带变异算子的粒子群优化算法 总被引:30,自引:5,他引:30
针对PSO算法存在易陷入局部最优点的缺点,该文提出了带变异算子的PSO算法。在算法搜索的后期引入变异算子,使算法摆脱后期易于陷入局部极优点的束缚,同时又保持前期搜索速度快的特性。通过对三个多峰的测试函数和一个问题空间为非凸集的实例所做的对比实验,表明改进的PSO算法增强了全局搜索能力,搜索成功率得到大大提高,克服了基本PSO易于收敛到局部最优点的缺点。 相似文献
4.
粒子群算法是一种随机全局优化算法,由于算法具有简单、易于实现、可调参数少等特点,得到了广泛的研究和应用。论文在研究标准算法原理的基础上,在算法搜索过程中引入变异算子,克服了标准算法易陷入局部极优点的不足。将改进后的算法运用常见的几个测试函数进行了寻优仿真,仿真结果验证了带变异算子的粒子群算法的可行性和有效性。 相似文献
5.
针对粒子群优化算法在进化过程的后期收敛速度较慢,易陷入局部最优的缺点,对基本粒子群优化算法作了如下改进:在速度更新公式中引入非线性递减的惯性权重;改进位置更新公式;对全局极值进行自适应的变异操作。提出一种新的混合变异算子的自适应粒子群优化算法。通过与其他算法的数值实验对比,表明了该算法具有较快的收敛速度和较好的收敛精度。 相似文献
6.
7.
混合变异算子的自适应粒子群优化算法 总被引:5,自引:0,他引:5
针对惯性权重线性递减粒子群算法(LDW)不能适应复杂的非线性优化搜索过程的问题,提出了一种非线性递减的惯性权重策略,使算法很快地进入局部搜索,并在算法中引入混合变异算子,克服算法易早熟收敛的缺陷。对几种典型函数的测试结果表明,本文算法的收敛速度和收敛精度都明显优于LDW算法。 相似文献
8.
基于带变异算子粒子群优化算法的约束布局优化研究 总被引:39,自引:0,他引:39
该文研究二维带平衡及不干涉约束的圆集在圆容器内的布局优化问题(如卫星舱布局),属于NP-Hard问题,难于求解.文章提出了带变异算子的PSO算法(PSO with Mutation Operator),在算法搜索的后期引入变异算子,使算法摆脱后期易于陷入局部极优点的束缚,同时又保持前期搜索速度快的特性.将改进后的算法应用于约束布局问题,建立了此类问题的粒子群算法,并进行了3个算例(其中一个为已知最优解的算例)的数值计算,验证了带变异算子PSO算法在约束布局问题上的可行性和有效性. 相似文献
9.
基于遗传算子的改进粒子群优化算法 总被引:1,自引:0,他引:1
为了克服PSO算法容易陷入局部最优的缺陷,提出一种基于遗传算子的改进PSO算法。该算法借鉴常规的遗传算法中的选择交叉操作,在优化搜索过程中更新粒子的位置时,进行交叉操作,可以扩大全局搜索范围,避免局部最优,提高粒子的多样性。对改进后的算法使用几个典型的测试函数进行了仿真实验,实验结果表明,相比于标准PSO该算法的全局搜索能力和收敛精度都有较大提高,有效地改善了优化性能。 相似文献
10.
带变异算子的双种群粒子群优化算法 总被引:1,自引:0,他引:1
提出一种带变异算子的双种群粒子群算法,搜索在两个不同的子群中并行运行,分别使用不同的惯性权值,使得种群在全局和局部都有较好的搜索能力.通过子群重组实现种群间的信息交换.在算法中引入变异算子,产生局部最优解的邻域点,帮助惰性粒子逃离束缚,寻得更优解.对经典函数的测试结果表明,改进的算法在收敛速度和精度上有更好的性能. 相似文献
11.
粒子群算法相对于其他优化算法来说有着较强的寻优能力以及收敛速度快等特点,但是在多峰值函数优化中,基本粒子群算法存在着早熟收敛现象。针对粒子群算法易于陷入局部最小的弱点,提出了一种基于高斯变异的量子粒子群算法。该算法使粒子同时具有良好的全局搜索能力以及快速收敛能力。典型函数优化的仿真结果表明,该算法具有寻优能力强、搜索精度高、稳定性好等优点,适合于工程应用中的函数优化问题。 相似文献
12.
李剑 《计算机与数字工程》2009,37(7):13-16
为了提高微粒群算法优化高维目标的性能,采用了个体惯性权重自适应调整的微粒群算法,其中每个微粒拥有属于个体的惯性权重。通过对每个微粒的适应值进行评价对惯性权重动态和自适应,以加快其收敛速度并逃离局部最优。为了增强搜索性能,基于高斯变异和随机变异的变异算子被引入。该方法以及其他3种不同微粒群优化算法对4个经典函数在100、200和400维数下进行仿真的结果比较证明此算法在解决高维数目标时具有良好性能。 相似文献
13.
粒子群优化算法(particle swarm optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO算法具有简单、易实现、可调参数少等特点,在很多领域得到了广泛应用。但PSO算法存在早熟收敛问题。为了克服粒子群优化算法的早熟收敛问题,提出了一种旨在保持种群多样性的改进PSO(IPSO)算法,以提高PSO算法摆脱局部极小点的能力。通过对3种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度、有效的全局收敛性能,而且还具有良好的稳定性。 相似文献
14.
粒子群优化算法(particle swarm optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO算法具有简单、易实现、可调参数少等特点,在很多领域得到了广泛应用。但PSO算法存在早熟收敛问题。为了克服粒子群优化算法的早熟收敛问题,提出了一种旨在保持种群多样性的改进PSO(IPSO)算法,以提高PSO算法摆脱局部极小点的能力。通过对3种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度、有效的全局收敛性能,而且还具有良好的稳定性。 相似文献
15.
16.
作为群体智能的代表性方法之一,粒子群优化算法(PSO)通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。提出了一种改进的粒子群优化算法(MPSO),该算法以广泛学习粒子群优化算法(CLPSO)的思想为基础,主要引入了选择墙的概念。同时在参数的设置中结合高斯分布的概念,以提高算法的收敛性。实验结果表明,改进后的粒子群算法防止陷入局部最优的能力有了明显的增强。同时,算法使高维优化问题中全局最优解相对搜索空间位置的鲁棒性得到了明显提高。 相似文献
17.
文中利用突变微粒群算法进行图像融合;将图像融合问题转化为优化问题,通过使目标函数(平均梯度)最大以求得好的融合效果;并以离散平稳小波变换代替传统的离散小波变换,以克服离散小波变换缺乏平移不变性的缺点;先对源图像进行离散平稳小波分解,细节部分利用能量系数矩阵进行融合;对于近似部分,利用突变微粒群算法求出最优权值对近似部分进行加权融合;实验结果表明,该方法的融合效果优于传统的融合算法。 相似文献
18.
19.
改进的粒子群优化算法在QoS选播路由中的应用 总被引:4,自引:0,他引:4
QoS选播路由问题是一个非线性的组合优化问题,已被证明是NP完全问题.提出一种基于改进的粒子群优化的多QoS选播路由算法.算法引入一种特殊相加算子,让较差的路径能够不断向较好的路径学习,使算法尽可能向全局最优者靠近;设计一种随机变异算子,通过对全局极值进行随机变异,保证了粒子的多样性,提高了算法跳出局部最优解的能力.实验结果表明,该算法是可行和有效的,能够在资源预留的基础上较好地满足用户对带宽和时延的要求. 相似文献