共查询到20条相似文献,搜索用时 62 毫秒
1.
基于BEMD和LBP提取特征的纹理分类 总被引:1,自引:0,他引:1
对于纹理图像的分类,采用二维经验模式分解将图像分解成一系列的固有模态函数(IMF)和残差,并结合局部二值模式(LBP)对所提取到的各IMF图像和残差图像进行特征提取的方法。为了验证算法的有效性,对自然纹理进行特征提取,并结合支持向量机(SVM)算法对提取的特征向量进行分类,分类精确度达到98%以上。 相似文献
2.
在基于机器视觉的疲劳驾驶预警系统中通过驾驶人员眼睛的状态来判断其是否疲劳是最直接和有效的途径,对眼睛的开与闭这两个基本状态的检测是判断疲劳的一个关键技术.针对红外视频人脸图像序列,提出一种基于LBP纹理检测算子的快速准确人眼开闭检测方法.该方法首先精确提取眼睛区域,然后利用对光照具有鲁棒性的LBP纹理检测算子检测眼睛区域纹理并计算其二阶矩、熵和边际分布二阶矩作为特征向量,最后使用SVM对特征向量进行分类以达到开闭检测的目的.大量实验结果表明,该方法不仅具有较高的检测准度,而且能完全满足实时要求. 相似文献
3.
4.
为解决听力障碍者与无障碍者的信息交流问题,对哑语手势自动识别技术进行研究;提出了一种改进的手势识别算法;首先通过YUV肤色分割、图像差分、连通域检测等算法进行预处理,获取完整的手型区域图像;然后对手型的二值图像进行轮廓检测,采用LBP变换与主成分分析进行特征提取与压缩;最后运用支持向量机的机器学习算法构建分类器,对哑语手势进行分类识别;通过对630张手势图像进行实验,结果表明,提出的算法有效提高了识别率与速度,识别率达到94.22%,速度达到0.29s/幅,可以满足哑语交流的实时性要求. 相似文献
5.
分析和比较在RGB和HSI两种不同色彩坐标系统下使用支持向量机对尿液细胞进行识别分类的效果,以及使用色彩特征参数与纹理特征参数进行综合识别分类尿液细胞的效果。提出一种改进的局部二元模式(LBP)纹理特征提取方法。实验结果表明提出的HSI颜色特征、基于改进的LBP法提取的纹理特征与支持向量机(SVM)相结合的方法在尿液细胞识别分类中效果良好。 相似文献
6.
主成分分析方法(PCA)和局部二元模式算子(LBP)相融合的特征提取方法结合了PCA在提取全局特征方面的优势和LBP在提取局部纹理细节方面的优势,能够从人脸图像中提取出较好的用于支持向量机(SVM)进行人脸性别识别分类的特征。在提取图像的LBP特征时,对传统的LBP方法做了改进,采用级联的方法提取图像的LBP直方图特征。并将提取出来的LBP特征与PCA特征相结合用于SVM,实验结果表明,LBP和PCA相融合的特征较单独的PCA特征和LBP特征在性别识别上具有明显的优势。 相似文献
7.
《传感器与微系统》2019,(5)
针对传统局部二值模式(LBP)特征提取方法在光线和人脸表情变化的情况下表现不佳、单一方法提取出的特征不能多角度表现出整张人脸的特征信息的问题,提出一种基于分块LBP融合特征和支持向量机(SVM)的人脸识别方法。先将人脸图像划分为不同的块,对每一块提取LBP特征;然后将不同分块的像素均值特征与LBP特征进行融合,用融合后的特征向量来表征人脸;最后引入SVM作为分类器对上述特征进行分类。在YALE、ORL标准人脸库以及自建人脸库上进行实验验证,实验结果表明:该方法识别准确率分别能达到95. 15%,99. 75%,96. 25%,对比实验显示,该方法优于C4. 5决策树、随机森林等传统方法。 相似文献
8.
针对现有的纹理特征提取方法计算复杂度高的问题,利用局部二值模式(LBP)算法思想简单、计算复杂度小的优势,在已有的完整LBP(CLBP)算法基础上,提出了一种改进的CLBP算法(ICLBP)。ICLBP算法保留了CLBP算法中CLBP_S,而对CLBP_M算子、CLBP_C算子进行了改进,提出一个新的纹理描述算子ICLBP_T。ICLBP算法更全面地描述了局部窗口的纹理特征,同时有效解决了CLBP算法中CLBP_M算子对灰度分布不均敏感的问题。通过对Outex、CURet数据库的数据分类实验,结果表明,相比于已有的LBP算法,ICLBP算法的分类精度有了明显的改进,同时ICLBP算法中ICLBP_SCT特征具有较低的特征维数,具有较好的实用价值。 相似文献
9.
10.
一种基于改进LBP算子的人脸识别算法研究 总被引:1,自引:0,他引:1
提出了一种基于改进LBP算子的人脸识别算法。局部二元模式(LBP)是一种灰度范围内的纹理描述方式,它从一种纹理局部近邻定义中衍生出来。然而,LBP算子本身还不够完善,在人脸识别的应用中还存在许多问题亟待解决。文章在此基础上,对其特征的组合方式等方面作了一些改进,并将改进后的LBP算子用于人脸识别。通过改进前后在YALE人脸库的实验比较,该方法在识别率上取得了较好的结果。 相似文献
11.
为了解决在人脸识别过程中由于年龄的变化而使人脸识别率急剧下降的问题,可在识别过程中加入快速、准确的年龄估计。提出了一种基于局域二值模式LBP(Local Binary Pattern)与支持向量机SVM(Support Vector Machine)回归相结合的年龄估计方法。对于人脸图像首先采用基于局部纹理特征的LBP算子进行人脸纹理特征提取;然后用基于整体特征的PCA方法对提取出来的纹理特征向量进行降维;最后使用SVM回归进行训练得到全局年龄函数,建立纹理特征向量与年龄之间的对应关系。实验结果表明,这种方法可以快速有效地对人脸图像进行年龄估计。 相似文献
12.
提出一种基于二维离散Haar小波变换的局部二值模式(LBP)与局部梯度模式(LGP)的特征融合方法。对图像进行二维离散Haar小波变换,得到4个不同频率的子图像,对低频部分子图像提取LBP特征,对3个高频部分子图像提取LGP特征,将3个LGP特征并接融合后与LBP特征串接融合进行行人检测。在Matlab环境下利用支持向量机(SVM)对INRIA数据集进行5组实验,分别将该方法与梯度方向直方图(HOG)、金字塔梯度方向直方图(PHOG)、LBP、LGP进行检测率、检测时间、光照鲁棒性以及噪声鲁棒性对比。综合各项实验数据表明,该方法在光照鲁棒性以及噪声鲁棒性方面都能取得更好的效果。 相似文献
13.
针对Gabor小波与局部二值模式(Local Binary Pattern,LBP)在表情识别上的局限性,提出了一种多尺度中心误差补偿二值模式(Center Error Compensation Binary Pattern,CECBP)的表情识别方法。对预处理后的人脸表情图像创建多尺度的金字塔,用中心误差补偿二值模式对金字塔中的各层图像进行编码,分块提取各层编码后的直方图序列作为特征,用支持向量机(Support Vector Machine,SVM)进行分类。在JAFFE、Cohn-Kanade以及Pain Expression表情库上的交叉验证表明,该方法可以抑制噪声,具有较高的识别率和较快的识别速度,比传统的Gabor小波以及LBP更具有优势。 相似文献
14.
提出了一种基于局部二元模式(Local Binary Pattern,LBP)与支持向量机(SVM)相结合的面部表情识别方法。使用LBP算子对图像进行处理,对图像的模式进行统计形成面部表情特征;使用线性判别分析对表情特征进行降维处理;采用支持向量机对面部表情进行分类。用Matlab实现了上述方法,并在日本女性人脸表情(JAFFE)数据库上测试,取得了70.95%的识别率。 相似文献
15.
一个有效的核方法通常取决于选择一个合适的核函数。目前研究核方法的热点是从数据中自动地进行核学习。提出基于最优分类标准的核学习方法,这个标准类似于线性鉴别分析和核Fisher判别式。并把此算法应用于模糊支持向量机多类分类器设计上,在ORL人脸数据集和Iris数据集上的实验验证了该算法的可行性。 相似文献
16.
提出一种基于局部差分二值模型(Local Difference Binary Pattern,LDBP)和局部二值模型(Local Binary Pattern,LBP)的特征融合方法,以解决行人检测中检测精确度和鲁棒性不足的问题。对输入图像进行二维离散Haar小波变换,得到不同频率的四个子图像(LL,LH,HL和HH);对低频部分子图像提取LDBP特征,以及对其他三个高频部分子图像提取LBP特征;采用主成分分析法(PCA)分别对得到的LDBP特征和LBP特征进行降维;融合降维后的LDBP特征和LBP特征进行行人检测。在INRIA数据集上采用支持向量机(SVM)进行测试,实验结果表明,该方法能有效地提高检测精确度,且具有较好的鲁棒性。 相似文献
17.
要:支持向量机(SVM)是一种新的模式识别方法,有较好的泛化能力和推广能力。研究了基于纹理提取和支持向量机的自动木材表面缺陷的识别问题,借助LBP纹理特征提取技术实现对木材图像数据降维处理,并研究了木材表面不同类型缺陷的分布规律。利用支持向量机分类算法对木材表面有无缺陷进行了快速准确的自动识别,实现了木材表面缺陷的自动定位。多次交叉实验表明,SVM分类算法对木材表面缺陷具有较好的识别能力,识别率可达96%以上。 相似文献
18.
人脸表情的LBP特征分析 总被引:1,自引:0,他引:1
为了有效提取面部表情特征,提出了一种新的基于LBP(局部二值模式)特征的人脸表情识别特征提取方法。首先用均值方差法对表情图像进行灰度规一化,通过对图像进行积分投影,定位出眉毛、眼睛、鼻和嘴巴这些关键特征点,进而划分出各特征部件所在子区域,然后对子区域进行分块,提取各个子区域的分块LBP直方图特征。为了验证所提出的方法的合理性,最后在JAFFE表情库上进行了实验,结果表明提出的方法能够有效地描述表情的特征。 相似文献
19.
20.
针对当前模糊支持向量机(FSVM)一般使用特征空间样本与类中心之间的距离构建隶属度函数的不足,提出了一种计算FSVM的隶属度的新方法。首次使用基于正态分布概率的π型隶属度函数来计算隶属度,根据正态分布的特性,在考虑数据分布规律的同时求得数据点的隶属值,使得求得的数据能够更加准确地反应数据的特点,进而获得更好的分类函数。实验表明,这种方法较SVM和FSVM相比,降低了噪声数据的影响,并且有效地提高了分类的准确率。 相似文献