共查询到19条相似文献,搜索用时 83 毫秒
1.
针对传统FCM算法在图像分割应用中抗噪性差的问题,提出一种基于空间约束和子空间距离的模糊C-均值聚类算法。该算法在原FCM公式的基础上加入一个包含空间领域信息的约束项,使得整体上相邻像素点趋于同一类时,目标函数最小。并将原FCM的欧氏距离替换为点到聚类子空间的距离,以达到更精准的聚类效果。人造图像和自然图像的分割实验结果表明,该方法明显优于标准的FCM算法,具有很好的抗噪性能。 相似文献
2.
《计算机应用与软件》2017,(4)
针对传统FCM聚类算法在图像分割时对噪声敏感的问题,提出一种结合空间邻域信息的核FCM图像分割算法。该算法在FCM算法目标函数中增加了空间约束函数,并引入考虑邻域信息的局部隶属度函数,同时引入核函数,用内核诱导距离替换原来的欧式距离,优化分割图像的特征。最后通过将全局模糊隶属度函数与局部隶属度函数结合在一起,得到新的加权隶属度函数,实现图像的分割。通过对人工合成图像和自然图像进行分割实验,结果表明,在分割质量和效果上该算法明显优于标准FCM算法及KFCM等改进算法,同时对噪声更具鲁棒性。 相似文献
3.
为提高现有模糊C均值聚类算法(FCM)对噪声图像分割的效果和稳定性,提出一种基于FCM的图像分割算法。利用非局部空间信息构建和图像,根据和图像的直方图,自动选择初始化聚类中心,通过求取目标函数极小值完成图像分割。理论分析和实验结果表明,该算法比现有算法更加有效和稳定,对噪声图像有更强的鲁棒性。 相似文献
4.
基于模糊C均值聚类的图像分割是应用较为广泛的方法之一,但大多数模糊C均值聚类方法都是基于欧式距离,且存在运算时间过长等问题。提出了一种基于Mahalanobis距离的模糊C均值聚类图像分割算法。实验分析表明,提出的算法在保证分割质量的前提下,能较快提高分割速度。实验结果表明了该方法的有效性。 相似文献
5.
基于改进FCM聚类算法的火灾图像分割 总被引:1,自引:0,他引:1
研究火灾识别问题,火灾图像分割是火灾特征提取和识别的前提,其分割效果直接影响火灾识别的准确率.针对现有分割方法中存在的经验阈值难以确定和因彩色信息丢失导致分割不准确等问题,为了准确识别火灾图像,提出一种改进的FCM聚类的火灾图像分割方法.方法选用符合人眼视觉特性的HSI颜色空间,根据数据分布特点确定色度分量H和亮度分量Ⅰ的初始聚类中心,分别在直方图特征空间进行模糊聚类处理,并利用像素的空间信息对模糊隶属度函数做了改进,最后在由两分量的模糊隶属度组成的二维特征空间上进行火灾图像分割.实验结果表明,算法可排除高亮区域的干扰,准确分割出火焰区域,为后续的火灾识别提供重要依据. 相似文献
6.
7.
针对传统的模糊C均值(FCM)聚类算法在样本数和特征数较多时,运算较为复杂以及耗时较多的问题,本文提出了一种采用直方图的相关性作为约束采样率的快速多阈值FCM分割方法,控制图像失真,使得需要运算的数据量减少,以获得较快的分割速度.由于借助了基于模糊集的图像分割技术--模糊C均值算法实现多阈值图像分割,考虑到了每个像素对... 相似文献
8.
准确地提取荔枝果实的完整轮廓对采摘机器人自动识别与采摘至关重要。以蚁群和模糊C均值(FCM)聚类为理论基础,选用符合荔枝颜色特性的L*a*b*颜色空间,提出一种基于蚁群和带空间约束FCM的荔枝图像分割算法。该算法利用L*a*b*颜色空间的a*通道正轴代表红色和负轴代表绿颜色进行初始分割,然后利用蚁群聚类算法全局性和鲁棒性的优点确定FCM的聚类中心,用引入空间约束的FCM完整地分割出荔枝果实。实验结果表明此方法实现了荔枝图像完整地分割,并且满足了采摘机器人后续的荔枝识别与采摘,对成熟荔枝分割的正确率达到了87%。 相似文献
9.
10.
针对分水岭变换算法对噪声敏感和易于产生过分割的问题,提出了一种基于分水岭变换和模糊C均值聚类(FCM)的图像分割算法。该算法不仅解决了分水岭变换算法的过分割问题,而且同时解决了FCM算法初始值难以确定的不足。实验结果显示,该算法可以快速准确地分割出目标,是一种有效的方法。 相似文献
11.
标准模糊C均值聚类算法由于没有考虑任何与图像空间连续性有关的信息,对噪声高度敏感,针对这一问题,提出一种基于图像空间信息的FCM聚类分割算法。该算法将图像像素的空间信息引入到相似性度量和隶属度函数中,其中空间信息由像素的相对位置和邻域内像素的特征决定。实验结果证明,该方法能有效地对含有一定噪声的图像进行分割,具有较好的抗噪性能。 相似文献
12.
13.
FLICM算法是一种基于FCM框架的有效的分割方法。然而,它对于强噪声图像的分割仍然不够准确。本文使用MRF模型的局部先验概率,对FLICM算法从两方面进行了改进。首先,在计算模糊因子时,使用先验概率对距离函数进行加权。改进的模糊因子考虑了更大范围的邻域约束,从而使算法受噪声的影响程度减弱。其次,在分割阶段,进一步使用局部先验概率对FLICM算法的隶属度进行加权。使用改进后的隶属度进行标记判决,使得每一标记的确定需要考虑邻域标记的影响,使分割结果的区域性更好。利用新算法对模拟影像和真实影像进行了分割实验,并与几个考虑空间信息约束的FCM分割算法进行了对比分析,结果证明该算法具有更强的抗噪性能。 相似文献
14.
基于小波图像融合算法和改进FCM聚类的MR脑部图像分割算法 总被引:1,自引:0,他引:1
针对很多基于模糊C均值(FCM)的图像分割算法存在对噪声敏感和分割轮廓不清晰等问题,提出一种基于小波变换图像融合算法和FCM聚类算法的MR医学图像分割算法。在图像分割系统的第一阶段,利用Haar小波多分辨率特性保持像素间的空间信息;第二阶段,利用小波图像融合算法对得到的多分辨率图像和原始图像进行融合,进而增强被处理图像的清晰度并降低噪声;第三阶段,利用改进型FCM技术对所处理的图像进行分割。在BrainWeb数据集上进行实验,与现有相关算法相比,提出的算法具有较高的分割精度,且对噪声的鲁棒性比较强,处理时间也没有明显增加。 相似文献
15.
FCM聚类算法对初始值敏感,不良的初始值会导致算法的收敛速度过慢和收敛到局部极值。将FEM算法用于图像分割处理时,初始值的选择是一个难点。文中提出了一种使用自适应初始值的FCM聚类图像分割算法,该方法利用图像的直方图特性建立候选聚类中心集,通过初始化准则函数检验候选集得到合适的聚类中心和聚类数目,并根据最大隶属度原则分割图像,得到了较好的分割效果。理论分析和实验表明文中方法收敛速度快,分割准确,自适应性很强。 相似文献
16.
17.
基于互信息量的图像分割 总被引:24,自引:1,他引:24
图像分割是图像信息处理的热点和难点之一,常用的分割方法有阈值法和聚类法等.模糊C均值(FCM)算法因其实现简单、结果较优而得到广泛应用,但FCM算法存在过分依赖初值、收敛于局部极值和需预先给定分类类数等问题.研究者们对此进行了大量研究和改进,但均无法彻底解决上述问题,基于模拟退火算法和互信息量,以最大互信息量为优化目标,文中提出了一种新的分类类数判据一互信息熵差,并在此基础上构造了一种新的阈值分割算法——最大互信息量分割算法(MMS),实验结果表明,MMS克服了FCM算法的上述不足.更为重要的是,作为一种一般性的分类算法,MMS算法如同FCM一样,可以应用到图像分割以外的更广阔的领域,如经济学、运筹学、模式识别等. 相似文献
18.