共查询到20条相似文献,搜索用时 78 毫秒
1.
神经网络、ARIMA等广泛应用于具有趋势变动性和周期波动性的二重趋势特征的时间序列预测,而这些单一的模型难以达到满意的预测效果。提出一种针对该特征的灰色组合模型,其基本思想是:从二重趋势时间序列中分离趋势变动项和周期波动项后,用灰色G(1,1)模型预测趋势变动项,引用BP网络和ARIMA的组合模型预测周期波动项,用乘积模型合成两部分预测值为灰色组合模型的最终预测值。实验表明:该灰色组合模型适应了二重趋势时间序列的特征,具有很好的预测效果。 相似文献
3.
网络流量具有时变性和非线性,单一预测方法难以准确描述网络流量变化规律,为提高网络流量预测准确率,提出一种网络流量组合预测模型(ARIMA-BPNN);首先采用ARIMA对网络流量进行预测,然后采用BPNN对网络流量非线性变化规律进行预测,且遗传算法优化BPNN初始权值,最后将两者预测结果作为BPNN输入进行二次预测,得到ARIMA-BPNN预测结果;仿真实验结果表明,相对于ARIMA、BPNN,ARIMA-BPNN提高网络流量预测精度,在网络管理中有着广泛的应用前景。 相似文献
4.
基于经验模态分解和基因表达式编程算法提出了一种软件可靠性预测模型。通过对软件失效数据序列进行经验模态分解得到不同频段的本征模态分量和剩余分量,消除失效数据中的噪声,运用基因表达式编程算法的灵活表达能力,把分解得到的不同频段的各本征模态分量及剩余分量中所对应的不同失效时间序列作为样本来分别进行预测,重构各本征模态分量和剩余分量中相对应的预测结果,将其作为软件失效的最终预测值。基于两组真实软件失效数据集,将所提出的方法与基于支持向量回归机以及单纯使用基因表达式编程的软件可靠性预测模型进行比较分析。结果表明,该软件可靠性预测模型具有更为显著的模型拟合能力与精确的预测效果。 相似文献
5.
基于ARIMA-LSSVM混合模型的犯罪时间序列预测 总被引:1,自引:2,他引:1
对犯罪时间序列的预测对帮助公安部门更好地掌握犯罪动态,实现智能犯罪发现具有重大意义。针对犯罪时间序列预测的计算需求,结合真实犯罪数据集,提出了ARIMA-LSSVM混合模型。该模型通过ARIMA预测出时间序列的线性部分,通过PSO优化的LSSVM模型预测非线性部分,以对序列进行充分拟合,最后通过混合算法计算最终结果。使用此混合模型达到了精准的预测效果,证明了模型的有效性。 相似文献
6.
本文研究了时间序列的分析方法,具体分析了基于最大Lyapunov指数的方法在太阳黑子时间序列分析中的应用。介绍利用MATLAB对太阳黑子时间序列进行分析与仿真的方法,并给出相关的流程、程序和相应的仿真结果。最终证明太阳黑子时间序列是一个混沌时间序列。 相似文献
7.
描述了小波和时间序列分析在数字信号质量监测中的应用。与传统监测信号方法不同,这种方法从被测信号的组成成分入手,通过小波变换对原始信号依尺度分解成不同层次,并从其中提取特征信号,同时对其建立自回归滑动平均(ARMA)模型,通过分析ARMA模型的参数得出信号的质量状况。另外还描述了如何根据被分析信号的特征、小波重构信号的能力及计算速度选择合理的小波基的方法。 相似文献
8.
针对冷负荷预测问题,提出了一种基于相空间重构(PSR)、经验模态分解(EMD)和径向基神经网络(RBFNN)的冷负荷组合预测模型.该模型首先利用经验模态分解方法,把冷负荷序列分解为少数模态分量,然后利用分组分量法将其分为多个高频子分量、总低频分量和残余量,最后以PSR为基础对各分量利用RBFNN方法建模并将预测结果重构... 相似文献
9.
碳交易价格的有效预测对制定符合国情的碳金融市场政策以及碳金融市场的风险管理都具有重要意义.对此,提出一种基于非结构数据流行学习的碳价格多尺度组合预测方法.首先,利用网络搜索指数提取碳价格相关的非结构化数据,基于等度量映射流行学习对其进行降维;然后,对降维后的非结构化数据、其他影响因素结构化数据、碳交易价格分别进行经验模态分解(Empirical mode decomposition,EMD),得到不同个数的本征模函数(Intrinsic mode function,IMF),并采用Fine-to-coarse方法对IMF进行重构,得到高频序列、低频序列和趋势项;最后,利用自回归积分滑动平均模型(Autoregressive integrated moving average model,ARIMA)、偏最小二乘(Partial least squares,PLS)回归和神经网络对高频数据、低频数据和趋势项进行预测,将3种预测结果进行集成,得到最终预测值.仿真实验结果表明,所提出的方法可以有效利用多源信息,具有较高的预测精度和良好的适用性. 相似文献
10.
11.
12.
结合Hilbert-Huang变换中的经验模态分解(EMD)和递归图(RP)法,提出了一种新的语音端点检测算法。该算法首先基于语音和噪声通过经验模态分解及其多尺度特征,在不同的固有模态函数(IMF)上进行软阈值时间尺度滤波处理,然后采用非线性动力学行为中的递归图法,定量统计递归分析中的确定性进行语音端点检测。仿真结果表明,该方法具有很强的非稳态动态变化分析能力,在低信噪比环境下较传统方法能更准确提取出语音信号的起止点,鲁棒性好。 相似文献
13.
为了在去噪的同时保证图像细节尽可能不被破坏,提出了利用经验模式分解(Empirical Mode Decomposition,EMD)的自适应图像去噪方法。对噪声图像按照列、行、左对角和右对角方向一维展开,分别进行EMD处理,采用提出的基于噪声标准差的自适应阈值对各个基本模式函数(Intrinsic Mode Function,IMF)进行局部硬阈值去噪,将去噪后的IMF进行反变换分别获得按照四个方向展开对应的去噪后图像,将它们加和平均得到去噪后图像。实验结果表明,提出的方法能够有效地去除图像的噪声并保留足够的图像细节。 相似文献
14.
为了有效地诊断飞行器的健康状况,提出了一种基于EMD-AR模型和PNN的飞行器健康诊断新方法。该方法采用EMD(Empirical Mode Decomposition,EMD)将飞行器关键部件的声发射信号进行分解,得到多个内禀模态分量(Intrinsic Mode Function,IMF),对前两个IMF分量建立AR模型,采用U-C算法对AR模型进行参数估计,以模型主要的自回归参数和残差的方差构建特征向量;运用概率神经网络(Probabilistic Neural Network,PNN)对飞行器的健康状态进行诊断。通过对某型号真实飞行器关键结构部件的健康监测实验表明,该方法可以有效地诊断出飞行器关键结构部件的疲劳裂纹,从而证明了该方法的有效性。 相似文献
15.
提出一种新的获取人体生理参数的方法,用摄像头采集人脸的彩色视频,对人脸区域进行颜色通道分离和独立成分分析(ICA),获取有用信号。使用经验模态分解(EMD)的方法,把信号分解成可以反映出生命信息的固有模态函数(IMF),再根据所设计的提取准则,分别提取出较为准确的心跳和呼吸信号。用Bland-Altman法进行对比实验分析,结果表明,此方法具有一定的准确性和实用性。 相似文献
16.
在目前的生物特征识别方法中,虹膜识别被认为是最可靠的技术。提出一种基于经验模态分解和支持向量机的虹膜识别方法——EMD提取虹膜特征,SVM实现模式匹配。实验结果表明,该方法能够有效地应用到身份鉴别系统中。 相似文献
17.
语音情感计算引起了国内外广泛的关注,特别是在语音情感特征提取方面做了大量的研究。利用经验模态分解(EMD)方法对情感语音进行处理,得到情感语音的前4阶固有模态函数(IMF),并将前4阶IMF分别通过Hilbert变换得到其瞬时频率和瞬时振幅。提取它们的统计特征,再结合情感语音的声学特征共同组成情感特征向量,并对特征向量做归一化处理。利用支持向量机(SVM)对四种情感语音即生气、高兴、悲伤和平静进行识别。实验结果表明该方法的识别效果较好。 相似文献
18.
基于经验模式分解和共空间模式,结合最优波长空间滤波,提出了三者相结合的特征提取方法。该方法首先利用经验模式分解进行分解,得到固有模态函数,选择合适的固有模态函数进行信号的重构,然后将重构的信号进行最优波长空间滤波变换,得到最优的波长选择信号,再经共空间模式投影映射,提取相应的特征向量,最后利用支持向量机进行分类。运用该方法对9位受试者进行分类结果分析,平均分类准确率在95%以上,实验表明,提出的算法具有较好的分类识别性。 相似文献
19.
20.
经验模态分解(EMD)是一种先进的数据处理方法,对脑电信号(EEG)等非线性非平稳信号的处理非常有效。但是其在利用三次样条曲线构造上下包络时,端点附近的包络存在严重的摆动。针对该问题,在镜面延拓算法的基础上,提出了二次延拓算法。根据邻近端点的数据计算出该信号在端点处的拟合函数;利用该拟合函数在左右端点各延拓出一个极值点;采用镜面延拓算法对延拓后的信号进行EMD分解。算法考虑了信号端点处的变化趋势,使得端点处的延拓更加合理,从而使三次样条曲线在端点处不会出现大的摆动。仿真结果表明,该算法能有效地对脑电信号进行分解。 相似文献