共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
为了提高网络仿真系统中,多物理服务器情况下,服务器资源的利用率,提出一种基于图多层K路划分的仿真节点映射策略。首先对仿真网络拓扑图进行多层K路划分,将节点映射问题转化为图划分问题,然后依据划分结果将仿真节点映射到物理服务器。经过试验表明,相对于随机映射策略,该策略在保证物理服务器负载均衡的同时,可以有效减少物理服务器资源的消耗。 相似文献
3.
在基于神经网络的图表示算法中,当节点属性维度过高、图的规模过大时,从内存到显存的数据传输会成为训练性能的瓶颈。针对这类问题,该方法将图划分算法应用于图表示学习中,降低了内存访问的I/O开销。该方法根据图节点的度数,将图划分成若干个块,使用显存缓存池存储若干个特征矩阵块。每一轮训练,使用缓存池中的特征矩阵块,以此来减少内存到显存的数据拷贝。针对这一思想,该方法使用基于图划分的抽样算法,设计显存的缓存池来降低内存的访问,运用多级负采样算法,降低训练中负样本采样的时间复杂度。在多个数据集上,与现有方法对比发现,该方法的下游机器学习准确率与原算法基本一致,训练效率可以提高2~ 7倍。实验结果表明,基于图划分的图表示学习能高效训练模型,同时保证节点表示向量的测试效果。今后的课题可以使用严谨的理论证明,阐明图划分模型与原模型的理论误差。 相似文献
4.
一种图K划分的随机算法 总被引:1,自引:0,他引:1
本文提出一个求解图K划分难题的模拟进化退火模型。该模型将模拟退火和模拟进化方法相结合,实现了多目标并行寻优策略。理论分析和实验结果表明,模拟进化退火模型的性能更优,解的优化程度更高。 相似文献
5.
为了解决深度图神经网络中存在的过平滑问题,提出一种基于子图划分的多尺度节点分类方法。该方法以Graph-Inception网络结构为核心,采用一种基于子图划分的数据预处理方法,通过改变图中的网络结构,优化特征聚集方式,有效地抑制了冗余搜索带来的过平滑问题;利用不同尺寸卷积核的组合来提取目标节点多尺度邻域的特征信息,以实现对图神经网络深度扩展的等效,一定程度上抑制了深层网络结构带来的过平滑问题。实验结果表明,该方法能够有效地抑制图神经网络中出现的过平滑问题,在基准数据集PPI、Reddit和Amazon上的分类准确率都得到了不同程度的提高。 相似文献
6.
分类是一个重要的挖掘任务,其目标是通过学习功能,将数据库中的记录按记录的属性值分成预先定义的类别。根据存在特征的最小子集,文章提出了建立类似树结构的输入属性和输出特征之间关系的信息网络来实现分类的方法。实验结果表明,与其它方法相比,该方法建立的模型更简洁,精度更高。 相似文献
7.
黄金贵 《计算机工程与应用》2009,45(4):4-8
研究多处理机任务调度模型Pm|fix,pj=1|Cmax,即在m个处理机系统中调度n个时间长度都为1的多处理机任务,每个任务指派到所需一组处理机上不可剥夺地执行。这类问题在网络并行计算、多播系统及工程规划等领域都有广泛的应用,但早已被证明为NP难问题,而且也不存在常数近似算法。基于团划分方法构造了该问题的多项式时间近似算法,通过模拟实验进行了验证,和最大宽度优先(LWF)算法相比,该算法花费时间较长,近似比性能要好。 相似文献
8.
软件逆向分析作为网络空间安全领域研究的核心支撑技术,在软件漏洞分析、恶意代码行为分析等方面有着广泛应用. 二进制代码的模块划分是该领域研究中的关键问题,通过将复杂或者大体量软件合理划分为若干模块,对于帮助分析者快速、准确理解软件结构与功能,提高分析效率起着重要作用. 对此,常见方法是将代码中的函数及其调用关系看作复杂网络,通过社区发现算法来进行函数聚类,实现模块划分,该类方法通常只考虑节点之间的连接关系,忽略了节点的属性、节点之间的相似度等信息,且对噪声和异常值比较敏感. 为了解决这些问题,提出了一种基于图嵌入的二进制代码模块划分(graph embedding based binary code modularization,GEBCM)方法. 该方法首先将软件系统抽象为属性图,然后通过带有注意力机制和排名机制的图嵌入聚类方法对函数节点进行嵌入表示并聚类. 通过聚类将二进制文件分组为更具有完整功能的独立部分,揭示了复杂程序结构中分离的模块语义信息. 在2个数据集上进行的实验评估,验证了所提出的GEBCM方法的有效性. 评估结果表明,相比其他二进制模块化工作,GEBCM的
9.
基于决策图的Web数据库访问优化策略 总被引:1,自引:0,他引:1
文章提出了一种用来解决Web数据库访问优化问题的决策方法的新应用。这种基于图形结构的优化方法借助了香农信息论手段,能够减少数据访问的时间,实现对大型数据库的快速查询,降低数据库的设计成本。 相似文献
10.
11.
从信息论的角度,提出了一种新的文本分类模型.该模型以文本提供的关于类别的信息作为分类依据,从另一个角度来思考文本分类问题.从实用性的角度来看,该模型与传统的朴素贝叶斯模型和基于KL距离的中心向量法具有一定的关系,并给出了证明.根据广义信息论的基本概念,又对此模型进行推广,提出了特征权重的概念,可以通过修正特征权重来修正文本分类模型,为成功解决文本分类模型的修正问题提供了理论基础. 相似文献
12.
针对以大数据为中心的信息开放共享平台,如何从嵌入大规模噪声结构的网络中解码出网络的真实结构,进一步在挖掘关联信息的过程中得到较为准确的挖掘结果的问题,提出基于结构熵的聚类方法实现对图中节点关联程度的划分.提出了计算二维结构信息的求解算法和基于熵减原则的模块划分算法,对图结构中节点划分得到对应的模块;利用K维结构信息算法... 相似文献
13.
D-S证据理论作为一种重要的不确定性推理理论,为处理传感器信息的模糊性及不确定性提供了很好的解决方法。但各个证据中的基本概率分配函数(mass函数)如何生成,仍是人们需要解决的问题。针对这一问题,提出了一种基于模糊理论中的高斯隶属度函数来得到传感器提供信息的可信度,计算了各个传感器之间的相互支持度;将各传感器的可信度和支持度转化成mass函数;利用证据理论对多传感器信息进行融合。仿真试验表明该方法能够有效提高识别的准确性和可靠性。 相似文献
14.
15.
郭红钰 《计算机工程与应用》2013,49(10):140-146
文本表示是使用分类算法处理文本时必不可少的环节,文本表示方法的选择对最终的分类精度起着至关重要的作用。针对经典的特征权重计算方法TFIDF(Term Frequency and Inverted Document Frequency)中存在的不足,提出了一种基于信息熵理论的特征权重算法ETFIDF(Entropy based TFIDF)。ETFIDF不仅考虑特征项在文档中出现的频率及该特征项在训练集中的集中度,而且还考虑该特征项在各个类别中的分散度。实验结果表明,采用ETFIDF计算特征权重可以有效地提高文本分类性能,对ETFIDF与特征选择的关系进行了较详细的理论分析和实验研究。实验结果表明,在文本表示阶段考虑特征与类别的关系可以更为准确地表示文本;如果综合考虑精度与效率两个方面因素,ETFIDF算法与特征选择算法一起采用能够得到更好的分类效果。 相似文献
16.
证据理论具有比较强的理论基础,能处理随机性或模糊性所导致的不确定性。但证据理论应用中基本概率分配函数(mass函数)难以确定,针对这一问题,提出了一种基于模糊推理的证据理论信息融合算法。该方法利用模糊理论中的高斯隶属度函数来获得模糊观测下具有概率特性的似然函数,并且由此似然函数得到每个传感器提供信息的可信度;再将各传感器的可信度转化成基本概率赋值函数即mass函数;最后利用证据理论对多传感器信息进行融合。对目标识别的仿真试验表明该方法获得的结果比直接结果具有更高的精度和可靠性。 相似文献
17.
影响力最大化是研究如何在社会网络中寻找小部分最具影响力的节点作为信息扩散源,使信息在网络中传播范围最大的问题.已有相关研究大多只是针对同质信息网络,但现实中的社会网络是包含了多种对象类型和对象之间多种关系类型的异质网络,因此提出了基于元路径的邻接信息熵(MPAIE)模型,以及基于元图的邻接信息熵(MGAIE)模型来模拟异质信息网络中的社会影响.通过设置元路径或元图,该方法可以灵活地整合异质网络中的结构和语义信息,对节点的影响力做出度量,并在两个真实数据集上验证了MPAIE及MGAIE模型的有效性. 相似文献
18.
19.
为了有效解决冲突证据的融合问题,在计算证据空间冲突向量的基础上,提出了一种基于信息熵测度的冲突证据合成方法.首先计算证据的信息熵获得该证据引起不确定性的度量,用信息熵计算证据空间赋予该证据的信任度,再用获得的信任度对数据模型进行加权处理,最后对处理后的证据运用D-S合成规则获得结果.实验表明该算法有效解决了冲突证据的合成问题,识别精度高、收敛速度快. 相似文献
20.
基于信息熵的D-S证据理论及其在传感器融合中的应用 总被引:1,自引:0,他引:1
从证据本身和证据之间的相互关系两个方面分析了证据的可信度及相应在融合过程中获得的权重.引入了证据信息熵的概念,并给出了从证据本身确定可信度的方法.为了从证据之间的相互关系考察证据的可信度,给出了描述证据间相互支持的模糊关系矩阵,并依此来影响各传感器对于融合数据的重要性.实验验证了所提方法的有效性和鲁棒性. 相似文献