共查询到19条相似文献,搜索用时 93 毫秒
1.
针对相关实体发现中基于Wikipedia的实体排序存在的问题: 半自动的目标类型获取、粗粒度的目标类型、实体类型相关度二值判断、实体关系相关度计算未考虑停止词作用.设计了一个实体排序框架,从实体相关度、实体类型相关度和实体关系相关度3方面的组合计算来对实体进行排序,通过对比多种组合方法获取了最优的方法.提出了一种新的实体类型相关度计算方法,该方法可以自动获取细粒度的目标实体类型,并通过归纳学习获取其下义Wikipedia类别判别规则集合,通过统计候选实体类别信息中符合目标类型下义类别判别规则的类别数来计算实体类型相关度.提出了一种”去停止词重构关系”方法计算候选实体和源实体的关系相关度.实验表明提出的方法可以有效地提高实体排序效果并且降低计算时间耗费. 相似文献
2.
3.
在医疗命名实体识别中,由于存在大量医学专业术语和语料中语言不规范的原因,识别的准确率不高。为了识别未登录的医学术语和应对语言不规范问题,提出一种基于N-grams新词发现的Lattice-LSTM的多粒度命名实体识别模型。在医疗对话语料中使用N-grams算法提取新词并构造一个医疗相关的词典,通过Lattice-LSTM模型将输入的字符和所有能在词典匹配的单词一起编码,其中门结构能够使模型选择最相关的字符和单词。Lattice-LSTM能够利用发现的新词信息识别未登录的医学术语,从而得到更好的实验识别结果。 相似文献
4.
命名实体识别是自然语言处理的基础任务之一,目的是从非结构化的文本中识别出所需的实体及类型,其识别的结果可用于实体关系抽取、知识图谱构建等众多实际应用。近些年,随着深度学习在自然语言处理领域的广泛应用,各种基于深度学习的命名实体识别方法均取得了较好的效果,其性能全面超越传统的基于人工特征的方法。该文从三个方面介绍近期基于深度学习的命名实体识别方法: 第一,从输入层、编码层和解码层出发,介绍命名实体识别的一般框架;第二,分析汉语命名实体识别的特点,着重介绍各种融合字词信息的模型;第三,介绍低资源的命名实体识别,主要包括跨语言迁移方法、跨领域迁移方法、跨任务迁移方法和集成自动标注语料的方法等。最后,总结相关工作,并提出未来可能的研究方向。 相似文献
5.
命名实体识别(NER)旨在识别出文本中的专有名词,并对其进行分类。由于用于监督学习的训练数据通常由人工标注,耗时耗力,因此很难得到大规模的标注数据。为解决中文命名实体识别任务中因缺乏大规模标注语料而造成的数据稀缺问题,以及传统字向量不能解决的一字多义问题,文中使用在大规模无监督数据上预训练的基于上下文相关的字向量,即利用语言模型生成上下文相关字向量以改进中文NER模型的性能。同时,为解决命名实体识别中的未登录词问题,文中提出了基于字语言模型的中文NER系统。把语言模型学习到的字向量作为NER模型的输入,使得同一中文汉字在不同语境中有不同的表示。文中在6个中文NER数据集上进行了实验。实验结果表明,基于上下文相关的字向量可以很好地提升NER模型的性能,其平均性能F1值提升了4.95%。对实验结果进行进一步分析发现,新系统在OOV实体识别上也可以取得很好的效果,同时对一些特殊类型的中文实体识别也有不错的表现。 相似文献
6.
实验提出了一种基于词频统计的蛋白质关系知识发现方法,该方法首先通过生物命名实体识别技术识别出蛋白质实体,然后统计共出现频率,形成候选实体对,从而发现最有可能的实体关联。 相似文献
7.
实验提出了一种基于词频统计的蛋白质关系知识发现方法,该方法首先通过生物命名实体识别技术识别出蛋白质实体,然后统计共出现频率,形成候选实体对,从而发现最有可能的实体关联。 相似文献
8.
提出一种基于维基百科的领域实体发现方法,该方法将构成领域实体的典型字或词作为种子元素,利用少量种子元素作为实体发现的初始知识,有效地克服了传统方法在获取种子词条时过分依赖领域专家的局限,同时还利用维基百科词条中的分类信息,通过计算维基百科类与领域类间的隶属度实现领域实体的有效扩充。人工抽样对实体发现结果进行检验,平均准确率达到80%左右,同时还将构建出的领域实体知识应用到文本分类中,结果显示,当训练集具有一定规模时,以实体为特征的分类模型的准确率较以词为特征分类模型的准确率有显著提高,说明实体知识在实际应用中的有效性。提出的方法具有较好的领域独立性和语种独立性,可较为便捷地移植到其他语种与领域。 相似文献
9.
实体消歧是指在一个具体的知识库中,把一个被标识的实体指称链向它对应条目的过程。实体消歧的任务是根据上下文信息解决一个命名实体指称项对应多个实体概念的一词多义问题,它在从海量数据准确提取信息的知识图谱构建过程中起到重要作用,是自然语言处理中的一项基本任务。该文主要对实体消歧技术的相关研究内容进行综述。首先,阐述了实体消歧的国内外研究背景,并对命名实体识别、候选实体生成、候选实体排序等实体消歧相关理论进行全面梳理。其次,对实体消歧的具体含义及其研究内容进行详细综述,并对实体消歧研究内容的特点进行了分析。再次,将实体消歧技术的实现方法划分为三类并对涉及到的数据集进行归纳,并从四个方面讨论了实体消歧领域存在的难点和提高实体消歧准确率的途径,对消歧方法的优缺点及评价指标进行了总结,意在为改善实体消歧效果提供新的解决思路。最后,对实体消歧技术的应用和发展前景进行总结。 相似文献
10.
中文命名实体识别(NER)任务是信息抽取领域内的一个子任务,其任务目标是给定一段非结构文本后,从句子中寻找、识别和分类相关实体,例如人名、地名和机构名称.中文命名实体识别是一个自然语言处理(NLP)领域的基本任务,在许多下游NLP任务中,包括信息检索、关系抽取和问答系统中扮演着重要角色.全面回顾了现有的基于神经网络的单... 相似文献
11.
在生物医学临床病历文本的命名实体识别任务中,传统的解决方案由于对实体的边界划分不够精确,影响了部分复合实体的识别。通过研究复合实体的特性,提出一种集成的卷积神经网络(E-CNN)模型与双向长短期记忆网络(BLSTM)和条件随机场(CRF)结合的模型,通过对CNN中的卷积层设定不同卷积窗口的大小,来捕获多个词语之间更丰富的边界特征信息。然后将集成的特征信息传递给BLSTM模型进行训练,最后由CRF模型得到最终的序列标注。实验结果表明,该方法针对临床病历文本中的复合实体识别具有良好的效果。 相似文献
12.
We present Wiser, a new semantic search engine for expert finding in academia. Our system is unsupervised and it jointly combines classical language modeling techniques, based on text evidences, with the Wikipedia Knowledge Graph, via entity linking.Wiser indexes each academic author through a novel profiling technique which models her expertise with a small, labeled and weighted graph drawn from Wikipedia. Nodes in this graph are the Wikipedia entities mentioned in the author’s publications, whereas the weighted edges express the semantic relatedness among these entities computed via textual and graph-based relatedness functions. Every node is also labeled with a relevance score which models the pertinence of the corresponding entity to author’s expertise, and is computed by means of a proper random-walk calculation over that graph; and with a latent vector representation which is learned via entity and other kinds of structural embeddings derived from Wikipedia.At query time, experts are retrieved by combining classic document-centric approaches, which exploit the occurrences of query terms in the author’s documents, with a novel set of profile-centric scoring strategies, which compute the semantic relatedness between the author’s expertise and the query topic via the above graph-based profiles.The effectiveness of our system is established over a large-scale experimental test on a standard dataset for this task. We show that Wiser achieves better performance than all the other competitors, thus proving the effectiveness of modeling author’s profile via our “semantic” graph of entities. Finally, we comment on the use of Wiser for indexing and profiling the whole research community within the University of Pisa, and its application to technology transfer in our University. 相似文献
13.
14.
15.
为提高机构名识别精度,满足关系抽取等下游任务的需求,提出分阶段细粒度命名实体识别思想.利用Bert-BiLSTM-CRF模型对机构名进行粗粒度识别,将机构名视为短文本,采用Bert-CNN对构建的机构名词典训练细粒度分类模型,获取机构名的细粒度标签.实验结果表明,提出的分阶段方法在细粒度机构名识别上F1值最佳达到了0.... 相似文献
16.
随着信息化建设的深入发展,应用系统积累的数据和信息资源越来越多.如何在不影响现有应用系统的配置和管理模式下,针对大量的分散和异构的应用,为用户提供快速准确的信息获取服务,已经成为一个亟待解决的问题.为此,提出了基于语义的信息获取服务平台,通过引入基于语义的全局数据视图对文档加以快速索引,并对索引进行切分和备份,同时采用针对性的相关性排序算法,为用户提供更好的信息获取服务. 相似文献
17.
互联网文本数量持续爆炸式增长,用户通过互联网查找信息变得更加困难,响应时间得不到满足。针对藏文本身的语言学特点,探讨一种面向信息搜索的藏文文本索引建立策略,建立一种高效的藏文文本索引,以提高藏文信息检索速度。 相似文献
18.
Query processing and inverted indices in shared-nothing text document information retrieval systems 总被引:1,自引:0,他引:1
Anthony Tomasic M.A. Ph.D. Candidate Hector Garcia-Molina Ph.D. 《The VLDB Journal The International Journal on Very Large Data Bases》1993,2(3):243-275
The performance of distributed text document retrieval systems is strongly influenced by the organization of the inverted text. This article compares the performance impact on query processing of various physical organizations for inverted lists. We present a new probabilistic model of the database and queries. Simulation experiments determine those variables that most strongly influence response time and throughput. This leads to a set of design trade-offs over a wide range of hardware configurations and new parallel query processing strategies. 相似文献
19.
This article provides a comprehensive and comparative overview of question answering technology. It presents the question answering task from an information retrieval perspective and emphasises the importance of retrieval models, i.e., representations of queries and information documents, and retrieval functions which are used for estimating the relevance between a query and an answer candidate. The survey suggests a general question answering architecture that steadily increases the complexity of the representation level of questions and information objects. On the one hand, natural language queries are reduced to keyword-based searches, on the other hand, knowledge bases are queried with structured or logical queries obtained from the natural language questions, and answers are obtained through reasoning. We discuss different levels of processing yielding bag-of-words-based and more complex representations integrating part-of-speech tags, classification of the expected answer type, semantic roles, discourse analysis, translation into a SQL-like language and logical representations. 相似文献