首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process models for an equilibrium CO2 absorber and a rate based CO2 absorber using potassium carbonate (K2CO3) solvents were developed in Aspen Custom Modeller (ACM) to remove CO2 from a flue gas. The process model utilised the Electrolyte Non-Random Two Liquid (ENRTL) thermodynamic model and various packing correlations. The results from the ACM equilibrium model shows good agreement with an inbuilt Aspen Plus® model when using the same input conditions. By further introducing a Murphree efficiency which is related to mass transfer and packing hydraulics, the equilibrium model can validate the experimental results from a pilot plant within a deviation of 10%. A more rigorous rate based model included mass and energy flux across the interface and the enhancement effect resulting from chemical reactions. The rate based model was validated using experimental data from pilot plants and was shown to predict the results to within 10%. A parametric sensitivity analysis showed that inlet flue gas flowrate and K2CO3 concentration in the lean solvent has significant impact on CO2 recovery. Although both models can provide reasonable predictions based on pilot plant results, the rate based model is more advanced as it can explain mass and heat transfer, transport phenomena and chemical reactions occurring inside the absorber without introducing an empirical Murphree efficiency.  相似文献   

2.
单乙醇胺吸收CO2的热力学模型和过程模拟   总被引:4,自引:1,他引:3       下载免费PDF全文
李晗  陈健 《化工学报》2014,65(1):47-54
采用非随机双流体电解质(ENRTL)热力学模型,通过拟合单乙醇胺(MEA)的饱和蒸气压、热容数据,MEA和水(H2O)二元体系的汽液平衡、热容、混合热数据,以及二氧化碳(CO2)在MEA水溶液中的溶解度数据,建立了MEA吸收CO2的热力学模型,并用核磁共振(NMR)组成数据成功地进行了验证。在此模型基础上,利用平衡级模型建立了MEA吸收/解吸CO2的过程模拟,利用文献中中试工厂数据验证了过程模拟的准确性。对于质量分数为30%的MEA溶液,固定吸收塔CO2去除率为90%的条件下,当吸收塔液气质量流率比值为2时,再沸器能耗最小,为3.64 GJ·(t CO2-1。  相似文献   

3.
In this work new experimental data on the rate of absorption of CO2 into piperazine (PZ) activated concentrated aqueous solutions of 2-amino-2-methyl-1-propanol (AMP) over the temperature range 303–323 K are presented. The absorption experiments have been carried out in a wetted wall contactor over CO2 partial pressure range of 5–15 kPa. PZ is used as a rate activator with a concentration ranging from 2 to 8 wt% keeping the total amine concentration in the solution at 40 wt%. The physical properties such as density and viscosity of concentrated aqueous AMP+PZ, as well as physical solubility of CO2 in concentrated aqueous AMP+PZ, are also measured. New experimental data on vapor liquid equilibrium (VLE) of CO2 in these concentrated aqueous solutions of AMP+PZ in the temperature range of 303–323 K have also been presented. The VLE measurements are carried out in an equilibrium cell in CO2 pressure range of 0.1–140 kPa. A thermodynamic model based on electrolyte non-random two-liquid (eNRTL) theory is used to represent the VLE of CO2 in aqueous AMP+PZ. Liquid phase speciations are estimated considering the nonideality of concentrated solutions of the amines and the calculated activity coefficients by eNRTL model. The CO2 absorption in the aqueous amine solutions is described by a combined mass transfer-reaction kinetics model developed according to Higbie's penetration theory. The model predictions have been found to be in good agreement with the experimental results of the rates of absorptions of CO2 into aqueous AMP+PZ.  相似文献   

4.
中空纤维膜吸收器中CO2吸收过程模拟   总被引:8,自引:0,他引:8       下载免费PDF全文
王志  龚彦文  袁力  王世昌 《化工学报》2003,54(11):1563-1568
研究了CO2在中空纤维膜吸收器中的吸收过程.以非湿膜操作为例,建立了中空纤维膜吸收器的传质模型,用T-型差分法模拟了CO2在水、NaOH、乙醇胺(MEA)、2-胺基-2-甲基-1-丙醇(AMP)水溶液中的吸收.研究了AMP-MEA混合有机胺水溶液吸收CO2的过程.对于CO2在0.6mol•L-1 NaOH水溶液中的吸收,比较了模拟结果与实验数据,二者符合较好.  相似文献   

5.
Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) and Delta Electricity have developed, commissioned and operated an A$7 million aqueous NH3 based post-combustion capture (PCC) pilot plant at the Munmorah black coal fired power station in Australia. The results from the pilot plant trials will be used to address the gap in know-how on application of aqueous NH3 for post-combustion capture of CO2 and other pollutants in the flue gas and explore the potential of the NH3 process for application in the Australia power sector. This paper is one of a series of publications to report and discuss the experimental results obtained from the pilot plant trials and primarily focuses on the absorption section.The pilot plant trials have confirmed the technical feasibility of the NH3 based capture process. CO2 removal efficiency of more than 85% can be achieved even with low NH3 content of up to 6 wt%. The NH3 process is effective for SO2 but not for NO in the flue gas. More than 95% of SO2 in the flue gas is removed in the pre-treatment column using NH3. The mass transfer coefficients for CO2 in the absorber as functions of CO2 loading and NH3 concentration have been obtained based on pilot plant data.  相似文献   

6.
A model is presented for the steady-state simulation of a CO2 recovery pilot plant with aqueous monoethanolamine (MEA) solutions. CO2 absorption is performed in a column packed with 2.54 cm ceramic Pall rings. CO2 recovery is achieved in a 20 sieve tray steam stripping column. The packed column absorption model was fitted to the experimental data using the specific interfacial area of the irrigated packing as an adjustable parameter. The equivalent average bubble diameter was used as the adjusting parameter in the sieve tray stripping column. Modelling of both towers reproduces within 3% average error concentrations measured in a pilot plant. Measured temperatures were also well correlated.  相似文献   

7.
Among carbon capture and storage (CCS), the post-combustion capture of carbon dioxide (CO2) by means of chemical absorption is actually the most developed process. Steady state process simulation turned out as a powerful tool for the design of such CO2 scrubbers. Besides steady state modeling, transient process simulations deliver valuable information on the dynamic behavior of the system. Dynamic interactions of the power plant with the CO2 separation plant can be described by such models. Within this work a dynamic process simulation model of the absorption unit of a CO2 separation plant was developed. For describing the chemical absorption of CO2 into an aqueous monoethanolamine solution a rate based approach was used. All models were developed within the Aspen Custom Modeler® simulation environment. Thermo physical properties as well as transport properties were taken from the electrolyte non-random-two-liquid model provided by the Aspen Properties® database. Within this work two simulation cases are presented. In a first simulation the inlet temperature of the flue gas and the lean solvent into the absorber column was changed. The results were validated by using experimental data from the CO2SEPPL test rig located at the Dürnrohr power station. In a second simulation the flue gas flow to the separation plant was increased. Due to the unavailability of experimental data a validation of the results from the second simulation could not be achieved.  相似文献   

8.
Process fault detection and diagnosis is an important problem in plant control at the supervisory level. It is the central component of abnormal event management which has attracted a lot of attention recently. In this study, the use of artificial neural networks (ANN) for fault detection is explored. An ANN can represent nonlinear and complex relations between its inputs (sensor measurements) and outputs (faults). As a test case, absorption of CO2 gas in monoethanolamine (MEA) by a pilot plant called “automatic absorption and stripping pilot plant” is studied. For detecting and diagnosis of faults, variations in feed rate, feed composition, liquid absorber rate and composition are imposed onto the plant. The faults in this process influence variables such as the composition of absorbed gas (CO2) and temperature and pressure drop of the column. The CO2 concentration in the product should not exceed a certain limit. By selecting a proper architecture for the network (5‐9‐10), it is possible to detect the faults accurately. The network is trained using the back propagation method. The developed fault diagnosis algorithm is tested using data that has not been seen by the network.  相似文献   

9.
In the present work, the kinetics of the reactive absorption of CO2 in 1-dimethylamino-2-propanol (1DMA2P) solution were experimentally measured using a laminar jet absorber over a temperature range of 298–313 K, 1DMA2P concentration range of 0.5–2.0 mol/L, and CO2 loading range of 0–0.06 mol CO2/mol amine. The measured kinetics data were then used to develop a comprehensive numerical kinetics model using a FEM-based COMSOL software. The reaction rate model of the CO2 absorption into 1DMA2P solution were then validated by comparing model rates with the experimental rates. An excellent agreement of model data with experimental data was achieved with an absolute average deviation (AAD) of 6.5%. In addition, vapor–liquid equilibrium plots of all ions in the 1DMA2P-H2O-CO2 system were also developed. Further, this work has provided an effective criterion for evaluating CO2 absorption, that can be used for both the conventional amines and alternative amines for the purpose of providing guidelines or information on how to effectively screen solvents.  相似文献   

10.
The CO2 post-combustion capture with amine solvents is modeled as a complex system interconnecting process energy consumption and solvent degradation and emission. Based on own experimental data, monoethanolamine degradation is included into a CO2 capture process model. The influence of operating conditions on solvent loss is validated with pilot plant data from literature. Predicted solvent consumption rates are in better agreement with plant data than any previous work, and pathways are discussed to further refine the model. Oxidative degradation in the absorber is the largest cause of solvent loss while thermal degradation does not appear as a major concern. Using a single model, the process exergy requirement decreases by 10.8% and the solvent loss by 11.1% compared to our base case. As a result, this model provides a practical tool to simultaneously minimize the process energy requirement and the solvent consumption in post-combustion CO2 capture plants with amine solvents.  相似文献   

11.
《分离科学与技术》2012,47(10):1389-1414
Abstract

High partial pressures of CO2, H2S and certain other constituents produced in coal gasification tend to make the use of physical solvents in associated acid gas removal systems more attractive than the use of chemical solvents. In the research program described in this paper operating data obtained on a pilot plant system employing refrigerated methanol as a solvent will be presented. A mathematical model of the packed absorber used in the process was developed.

Predictions of system performance for a feed gas consisting of CO2 and nitrogen compared favorably to experimental data obtained on the system. In addition, there was very good agreement between predicted and observed distributions of nine of the major components in a feed gas synthesized in a coal gasification reactor. The results show the validity of the modeling procedure and may be used in understanding the general characterists of packed absorbers and strippers.  相似文献   

12.
In this work, new experimental data on the rate of absorption of CO2 into piperazine (PZ) activated aqueous solutions of 2-amino-2-methyl-1-propanol (AMP) are reported. The absorption experiments using a wetted wall contactor have been carried out over the temperature range of 298-313 K and CO2 partial pressure range of 2-14 kPa. PZ is used as a rate activator with a concentration ranging from 2 to 8 wt%, keeping the total amine concentration in the solution at 30 wt%. The CO2 absorption into the aqueous amine solutions is described by a combined mass transfer-reaction kinetics-equilibrium model, developed according to Higbie's penetration theory. Parametric sensitivity analysis is done to determine the effects of possible errors in the model parameters on the accuracy of the calculated CO2 absorption rates from the model. The model predictions have been found to be in good agreement with the experimental results of rates of absorption of CO2 into aqueous (PZ+AMP). The good agreement between the model predicted rates and enhancement factors and the experimental results indicates that the combined mass transfer-reaction kinetics-equilibrium model with the appropriate use of model parameters can effectively represent CO2 mass transfer in PZ activated aqueous AMP solutions.  相似文献   

13.
This work investigates the feasibility of applying the cross-flow rotating packed bed (RPB) to the removal of carbon dioxide (CO2) by absorption from gaseous streams. Monoethanolamine (MEA) aqueous solution was used as the model absorbent. Also, other absorbents such as the NaOH and 2-amino-2-methyl-1-propanol (AMP) aqueous solutions were compared with the MEA aqueous solution. The CO2 removal efficiency was observed as functions of rotor speed, gas flow rate, liquid flow rate, MEA concentration, and CO2 concentration. Experimental results indicated that the rotor speed positively affects the CO2 removal efficiency. Our results further demonstrated that the CO2 removal efficiency increased with the liquid flow rate and the MEA concentration; however, decreased with the gas flow rate and the CO2 concentration. Additionally, the CO2 removal efficiency for the MEA aqueous solution was superior to that for the NaOH and AMP aqueous solutions. Based on the performance comparison with the conventional packed bed and the countercurrent-flow RPB, the cross-flow RPB is an effective absorber for CO2 absorption process.  相似文献   

14.
This work presents an experimental and theoretical investigation of CO2 absorption into aqueous blends of 2-amino-2-methyl-1-propanol (AMP) and diethanolamine (DEA). The CO2 absorption into the amine blends is described by a combined mass transfer-reaction kinetics-equilibrium model, developed according to Higbie's penetration theory. The model predictions have been found to be in good agreement with the experimental rates of absorption of CO2 into (AMP+DEA+H2O). The good agreement between the model predicted rates and enhancement factors and the experimental results indicate that the combined mass transfer-reaction kinetics-equilibrium model with the appropriate use of model parameters can effectively represent CO2 mass transfer for the aqueous amine blends AMP/DEA.  相似文献   

15.
The solubility of H2S, CO2 and their mixtures in a 3.43 molar solution of 2-amino-2-methyl-1-propanol (AMP) has been determined at 50°C at partial pressures between 4 and 5650 kPa. A mathematical model has been used to correlate the data for the individual gases in the solvent. The parameters obtained have been used to predict the partial pressures in the four-component system. In general the predicted values are in good agreement with the experimental data.  相似文献   

16.
The design of sour‐gas treating processes with alkanolamine solvents requires knowledge of the vapour–liquid equilibrium (VLE) of the aqueous acid gas–alkanolamine systems. Representation of the experimental data with a thermodynamically rigorous model is required, so that one can systematically correlate and predict the VLEs of these systems. The modified Clegg–Pitzer equations have been used to correlate and predict the VLE of CO2 in the aqueous N‐methyldiethanolamine (MDEA) and 2‐amino‐2‐methyl‐1‐propanol (AMP) systems. Differential evolution (DE), an evolutionary computational technique, has been used for parameter estimation of the developed VLE model in an effort to predict the VLE of CO2 in aqueous MDEA and AMP solutions with a comparable accuracy to that by using the non‐traditional simulated annealing (SA) and deterministic technique like Levenberg–Marquardt (LM), if not better. In this work, the DE/rand‐best/1/bin strategy has been used for finding near global minimum solutions to the multivariable optimization problem as a part of the numerical solution of the developed model.  相似文献   

17.
This paper deals with the modeling and optimization of the chemical absorption process to CO2 removal using monoethanolamine (MEA) aqueous solution. Precisely, an optimization mathematical model is proposed to determine the best operating conditions of the CO2 post-combustion process in order to maximize the CO2 removal efficiency. Certainly, the following two objective functions are considered for maximization: (a) ratio between the total absorbed CO2 and the total heating and cooling utilities and (b) ratio between total absorbed CO2 and the total amine flow-rate.Temperature, composition and flow-rate profiles of the aqueous solution and gas streams along the absorber and regenerator as well as the reboiler and condenser duties are considered as optimization variables. The number of trays or height equivalent to a theoretical plate (HETP) on the absorber and regenerator columns as well as the CO2 composition in flue gas are treated as model parameters. Correlations used to compute physical-chemical properties of the aqueous amine solution are taken from different specialized literature and are valid for a wide range of operating conditions. For the modeling, both columns (absorber and regenerator) are divided into a number of segments assuming that liquid and gas phases are well mixed.GAMS (General Algebraic Modeling System) and CONOPT are used, respectively, to implement and to solve the resulting mathematical model.The robustness and computational performance of the proposed model and a detailed discussion of the optimization results will be presented through different case studies. Finally, the proposed model cannot only be used as optimizer but also as a simulator by fixing the degree of freedom of the equation system.  相似文献   

18.
《分离科学与技术》2012,47(13):1952-1963
In this study three configurations, viz. conventional MEA, interstage absorber, and interstage absorber with two stripper configuration have been techno-economically evaluated for the optimized result by carrying out simulations using ASPEN PLUS. An economic model defined for carbon capture using 30 wt% MEA to reduce CO2 in flue gas to 0.5 mol% of 550 MWe coal fired power plant resulted in increase in COE of power plant by 20.6, 17.4, and 15.6 percents for the three configurations, respectively. The CO2-avoided cost for the three configurations are 65.94, 64.05, and 63.09 ($ /tonne of CO2 avoided), respectively.  相似文献   

19.
《Chemical engineering science》2001,56(21-22):6217-6224
This work presents an investigation of CO2 absorption into aqueous blends of methyldiethanolamine (MDEA) and monoethanolamine (MEA), as well as 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA). The combined mass transfer–reaction kinetics–equilibrium model to describe CO2 absorption into the amine blends has been developed according to Higbie's penetration theory following the work of Hagewiesche et al. (Chem. Eng. Sci. 50 (1995) 1071). The model predictions have been found to be in good agreement with the experimental rates of absorption of CO2 into (MDEA+MEA+H2O) of this work and into (AMP+MEA+H2O) reported by Xiao et al. (Chem. Eng. Sci. 55 (2000) 161), measured at higher contact times using wetted wall contactor. The good agreement between the model predicted rates and enhancement factors and the experimental results indicate that the combined mass transfer–reaction kinetics–equilibrium model with the appropriate use of model parameters can effectively represent CO2 mass transfer for the aqueous amine blends MDEA/MEA and AMP/MEA.  相似文献   

20.
A. Lawal  P. Stephenson  H. Yeung 《Fuel》2010,89(10):2791-2801
Post-combustion capture by chemical absorption using MEA solvent remains the only commercial technology for large scale CO2 capture for coal-fired power plants. This paper presents a study of the dynamic responses of a post-combustion CO2 capture plant by modelling and simulation. Such a plant consists mainly of the absorber (where CO2 is chemically absorbed) and the regenerator (where the chemical solvent is regenerated). Model development and validation are described followed by dynamic analysis of the absorber and regenerator columns linked together with recycle. The gPROMS (Process Systems Enterprise Ltd.) advanced process modelling environment has been used to implement the proposed work. The study gives insights into the operation of the absorber-regenerator combination with possible disturbances arising from integrated operation with a power generation plant. It is shown that the performance of the absorber is more sensitive to the molar L/G ratio than the actual flow rates of the liquid solvent and flue gas. In addition, the importance of appropriate water balance in the absorber column is shown. A step change of the reboiler duty indicates a slow response. A case involving the combination of two fundamental CO2 capture technologies (the partial oxyfuel mode in the furnace and the post-combustion solvent scrubbing) is studied. The flue gas composition was altered to mimic that observed with the combination. There was an initial sharp decrease in CO2 absorption level which may not be observed in steady-state simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号