首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wet massing granulation, a widely used industrial process, is difficult to monitor and control and the structure of the flow is poorly understood. Flow patterns in a planetary mixer were investigated using positron emission particle tracking. Both dry and wet powders of a model pharmaceutical formulation were studied to develop understanding of the influence of moisture content on the flow structure during granulation. The flow structure was characterised using the distributions of the velocity components in different cross-sections of the mixer. Fourier analysis showed that the dry system is essentially dissipative and disordered whereas the wet system, being more inertial, shows signs of being more ordered with a periodic recirculation within the bowl. In both systems, radial and axial displacements are strongly correlated. For the dry system, within a central radial core region, the behaviour of the particle was determined by the rapid movement of the agitator, forming a single toroidal recycling cell. The radial and axial velocities of the tracer were up to two orders of magnitude lower than the tangential component. However, in the regions close to the wall, the particle was found to exhibit small movements dictated by the planetary rotation. For wet systems these two main regions were again observed. However, velocity field and velocity distribution showed the presence of two toroidal circulation loops, one above the other. In the wall region, the small movements governed by the planetary motion were again found, but with the amplitude of the displacements reduced by an order of magnitude.  相似文献   

2.
The optimal control of processes dealing with non‐Newtonian liquids requires the knowledge and control of the power demand of the mixing equipment. In this context, an extension of the Metzner and Otto concept to planetary mixers is proposed to adapt this concept to planetary mixers. The theoretical part of this work defines modified expressions of Reynolds and power numbers. These definitions introduce a characteristic velocity uch that is used to define the parameter Ks. A planetary mixer is employed to experimentally ascertain this guideline. Power consumption measurements carried out by mixing shear‐thinning fluids permit to determine the Ks factor. This factor varies only slightly with the flow behavior index and may be regarded as a defined constant for this geometry. Finally, experiments with an additional shear‐thickening fluid confirm the validity of this approach.  相似文献   

3.
The performance of a coaxial mixer in the laminar-transitional flow regime was numerically investigated with Newtonian and non-Newtonian fluids. These mixers comprised two shafts: a central fast speed shaft mounted with an open turbine, and a slow speed shaft fitted with a wall scraping anchor arm. To model the complex hydrodynamics inside the vessel, the virtual finite element method (POLY3DTM software) coupled with a Lagrange multiplier approach to cope with the non-linearity coming from the rheological model was employed. Co-rotation and counter-rotation mode were compared, based on several numerical criteria, namely, mixing time, power consumption and pumping rate. It was found that co-rotating mode is more efficient than counter-rotating mode in terms of energy, pumping rate and homogenization time.  相似文献   

4.
唐巧  叶思施  王运东 《化工学报》2016,67(2):448-457
工业混合澄清槽混合室的放大设计多基于操作经验,缺乏理论基础。基于几何相似放大,采用计算流体力学(CFD)方法,针对间歇操作的单相体系,对4 种不同放大准则下混合室内混合时间和流场特性的变化规律进行研究。结果显示,混合时间的计算值与测量位置有关,但随转速的增加受测量位置的影响减小;充分湍流条件下,本研究体系的功率准数趋于常数NP=1.3,且几何相似放大可以保证混合室中轴向流动的流型特征;等桨叶端面速度和等Reynolds 数准则下,所需混合时间长,且抽吸压头小;等循环时间准则下,可以得到与基准混合室相同的混合时间和较高的抽吸压头,但单位体积功耗急剧增加到基准槽的24 倍;等单位体积功耗准则下,在满足具有较低的混合时间和较高的抽吸压头的同时还保证了较低的单位体积功耗,优于其他3 种放大准则。  相似文献   

5.
同心双轴复合式搅拌釜用于牛顿流体时的功耗及混合特性   总被引:4,自引:0,他引:4  
在直径0.48 m的椭圆底搅拌槽内,液位与槽径比(H/T)为0.6,采用不同粘度的牛顿流体糖浆溶液,研究了分别以CBY, 45o四斜叶桨及Rushton涡轮桨作为快速分散桨、锚式桨作为慢速桨构成的同心双轴搅拌系统,在快、慢速轴同向和异向2种旋转方式操作时的功率特性和混合性能. 结果表明,分散桨对锚式桨的功率消耗影响较大. 两轴同向旋转时,分散桨会使锚式桨的功耗降低,转速比RN增加,降低幅度也增大,RN=14时,锚式桨功率可降至单独旋转时的约10%;异向旋转时锚式桨的功率随RN增加而增加,RN=14时,锚式桨功率可增至单独旋转时的2倍左右. 但锚式桨对分散桨的功率消耗影响很小,在±5%以内. 计算同心双轴复合搅拌系统的复合功率准数和复合雷诺数关系时考虑了RN的影响,使在实验条件下不同转向及RN的功率曲线较好吻合. 混合效果同向旋转优于异向旋转,在牛顿流体中,达到相同混合效果时,CBY桨的能量消耗仅为其他2个分散桨的20%~30%.  相似文献   

6.
介绍了密炼配方时间减少的措施,通过密炼控制工艺的调整,在不增加硬件改造费用,不调整工艺配方的前提下,缩短密炼辅助时间,提高胶料产量,提高密炼机的利用效率.  相似文献   

7.
BACKGROUND: Jet mixing is one of the simplest methods to achieve mixing. There have been a number of experimental studies concerned with jet mixing; some of these studies report empirical correlations. The existing correlations are not useful where there are significant deviations from the idealized conditions. Most correlations reported in the literature deal with liquid flow with single or multiple jets, whereas the effect of radial angle on mixing time was not studied. This present study investigates the effect of operating parameters on experimental mixing time in a double jet mixer. Nozzle configuration for jet1 was fixed based on earlier studies (2/3rd position, nozzle angle 45° and nozzle diameter 10 mm). Mixing times were estimated for different jet2 configurations of jet angle (30°, 45° and 60°), radial angles (60°, 120°, 180°), jet diameter (5 mm and 3 mm) and located at different tank heights (2/3rd and 1/3rd from the bottom of the tank). RESULTS: A mixing time correlation was developed in terms of all the parameters using dimensional analysis. The constants and powers of the parameters involved in the correlation developed were estimated using a least square method to calculate the straight line that best fitted the mixing time data obtained during the experiments. The effects of change in angle of inclination of jet2 (θ2), radial angle of jet2 with respect to jet1 (Φ2) and diameter of jet2 (d2) on mixing time were analyzed and compared with the experimental mixing time. CONCLUSION: The correlation developed based on the dimensional analysis and least square method predicts the mixing time for a double jet mixing tank. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
采用单个悬浮粒子法和脱色法分别测定了多种不同几何尺寸的螺带式搅拌器的循环时间分布以及混合时间。得到同频度C_5值和混合时间C_1计算式。考察了流体的弹性对循环时间分布和循环流量的影响。  相似文献   

9.
A general correlation for pressure drop in a Kenics static mixer   总被引:3,自引:0,他引:3  
A new pressure drop correlation in a Kenics static mixer has been developed. Pressure drop data were generated from computational fluid dynamics (CFD) calculations, avoiding the experimental limitations in obtaining comprehensive data enough for developing a reliable pressure drop correlation. Dimensional analysis reveals that the pressure drop characteristic of the Kenics static mixer can be described by three dimensionless groups, i.e., the friction factor, Reynolds number (Re), and aspect ratio of a mixing element (AR). A systematic graphical analysis led to a single master curve governing the pressure drop behavior of the Kenics static mixer, which had never been achieved before. We derived a pressure drop correlation fitting well with the obtained master curve in a general form into which the AR effect on the pressure drop is directly incorporated. Unlike the already existing correlations available in the literature, the correlation proposed in this study can cover the whole range of Re from laminar to turbulence. The reliability of the proposed correlation was validated by the comparison with various pressure drop data reported in the literature.  相似文献   

10.
The study was carried out to simulate the 3D flow domain in the mixing of pseudoplastic fluids possessing yield stress with anchor impellers, using a computational fluid dynamics (CFD) package. The multiple reference frames (MRF) technique was employed to model the rotation of the impellers. The rheology of the fluid was approximated using the Herschel–Bulkley model. To validate the model, the CFD results for the power consumption were compared to the experimental data. After the flow fields were calculated, the simulations for tracer homogenization were performed to simulate the mixing time. The effects of impeller speed, fluid rheology, and impeller geometry on power consumption, mixing time, and flow pattern were explored. The optimum values of c/D (impeller clearance to tank diameter) and w/D (impeller blade width to tank diameter) ratios were determined on the basis of minimum mixing time.  相似文献   

11.
Mixing time is defined as the time required for achieving a certain degree of homogeneity of injected tracer in a unit operation vessel. It has been used as a key parameter for assessing the performance of a mixing system. From an experimental standpoint, several techniques have been developed for measuring the mixing time. Based on the disturbances to flow, they can be classified into two groups:non-intrusive and intrusive. However, depending on the type of data generated, they can be also classified into direct measurements and indirect measurements (Eulerian and Lagrangian). Since the techniques available for measuring mixing times in an agitated tank do not provide the same information, its choice depends on several factors, namely:accuracy, reproducibility, suitability, cost, sampling speed, type of data, and processing time. A review of the experimental techniques reported in the literature in the last 50 years for the measurement of mixing time in stirred vessels under single and gas–liquid flow conditions with Newtonian and non-Newtonian fluids in the laminar and turbulent regime is made, and a comparison between these techniques is also presented.  相似文献   

12.
We study the macromixing behavior of single and multi-orifice-impinging transverse (MOIT) jet mixers with crossflow, in particular, the overall mixing time and the back-splash mixing time of the injected flow with the crossflow, using the PLIF technique. It is found that for a given mixer configuration, there is a critical jet-tocrossflow velocity ratio rc at which the back-splash begins to occur. Further increase in the velocity ratio r leads to sharp increase in the back-splash mixing time, which can offset the intensification of the downstream mixing. The dimensionless overall mixing time decreases as r increases to reach either a plateau or a local minimum, and the corresponding r value represents the optimal velocity ratio ropt for the macromixing. The momentumratio of the two liquid streams is a key factor determining rc and ropt. For a larger scale mixer, a higher momentum ratio is required to achieve the optimal macromixing with the minimum dimensionless overall mixing time.  相似文献   

13.
Large eddy simulation is used to investigate the reactive scalar transport in a confined jet reactor at high Reynolds and Schmidt numbers. Numerical simulations are performed for a fast neutralization reaction of acid and base supported by experimental data. Based on detailed planar laser‐induced fluorescence measurements, a simple conditional micromixing model for infinitely fast chemistry is developed and successfully applied to the jet mixer configuration. Results obtained for the reactive scalar transport are in excellent agreement with measurements, whereas established micromixing approaches based on the eddy dissipation model, multi environment model, and presumed probability density function with infinetly fast chemistry models indicate discrepancies in the determination of micromixing rate and product concentration.  相似文献   

14.
采用脉冲示踪法对SK静态混合器内各截面的停留时间进行了实验测试,比较了流量对各截面停留时间分布的影响.结果表明:在同一截面上,随着流量增加,平均停留时间减小,停留时间分布密度曲线变得高而窄;在相同流量下,沿着轴线方向,平均停留时间增大,量纲一方差减小,流体流动趋向于活塞流.同一截面上,随着流量增加应答峰初期的斜率较陡,...  相似文献   

15.
A commercial CFD package was used to simulate the 3D flow field generated in a cylindrical tank by a helical ribbon impeller. The study was carried out using a pseudoplastic fluid with yield stress in the laminar mixing region. Ultrasonic Doppler velocimetry (UDV), a noninvasive fluid flow measurement technique for opaque systems, was used to measure xanthan gum velocity. From flow field calculations and tracer homogenization simulations, power consumption and mixing time results were obtained. The torque and power characteristics remain the same for upward and downward pumping of the impeller, but the mixing times are considerably longer for the downward pumping mode. Overall, the numerical results showed good agreement with experimental results and correlations developed by other researchers. From the power and mixing time results, two efficiency criteria were utilized to determine the best pumping mode of the impeller.  相似文献   

16.
The mixing dynamics in a cylindrical shaken bioreactor are investigated by means of velocity and kinetic energy and mixing time measurements obtained with phase-resolved PIV and a dual pH indicator system, respectively. The objective of the work is to correlate the kinetic energy of the flow and the mixing number measured under different operating conditions. The results provide evidence that the onset of a laminar-turbulent flow transition occurs when the previously reported transition to out-of-phase flow takes place, and that the mixing number is highly dependent on the position of the feeding pipe. Insertion close to the vessel walls and thus outside the vortical structures present near the centre of the reactor can enhance mixing.  相似文献   

17.
18.
The residence time distribution (RTD) of the liquid phase for co-current gas–liquid upflow in a Kenics static mixer (KSM) with air/water and air/non-Newtonian fluid systems was investigated. The effect of liquid and gas superficial velocities on liquid holdup and Peclet number was studied. Experiments were conducted in three KSMs of diameter 2.54 cm with 16 elements and 5.08 cm diameter with 8 and 16 elements, respectively, of constant Le/De = 1.5 for different liquid and gas velocities. A correlation was developed for Peclet number, in terms of generalized liquid Reynolds number, gas Froude number and liquid Galileo number, where as for liquid holdup, a correlation was developed as a function of gas Reynolds number. The axial dispersion model was found to be in good agreement with the experimental data.  相似文献   

19.
本文分别建立了相向旋转和同向旋转转子密炼机混炼流场的物理模型、数学模型和有限元模型,并用计算流体动力学软件Fluent对三维等温流场进行了模拟。通过对模拟结果的后处理和对粒子轨迹的统计,对相向和同向旋转转子密炼机的分散混合和分布混合性能进行了对比研究和定量描述。  相似文献   

20.
Planar laser‐induced fluorescence (PLIF) and electrical resistance tomography (ERT) were applied simultaneously to monitor the mixing performance of a KM static mixer for the blending of non‐Newtonian fluids of dissimilar rheologies in the laminar regime. The areal distribution method was used to obtain quantitative information from the ERT tomograms and the PLIF images. Comparison of the ERT and PLIF results demonstrates the ability of ERT to detect the mixing performance in cases of poor mixing within the resolution of the measurement, though the accuracy decreases as the condition of perfect mixing is approached. Thus, ERT has the potential to detect poor mixing within the confines of its resolution limit and the required conductivity contrast, providing potential rapid at‐line measurement for industrial practitioners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号