首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the periodic-signal ambiguity function for visualizing the intensity-spectrum evolution through propagation in a first-order dispersive medium. We show that the degree of temporal coherence of the optical source plays the role of a low-pass filter on the signal's ambiguity function. Based on this, we present a condition on the temporal Lau effect for filtering harmonics at fractions of the Talbot length. This result allows one to increase the repetition rate of a pulse train obtained from a sinusoidally phase-modulated CW signal.  相似文献   

2.
The power spectral density of the intensity of coherent Gaussian pulse trains suffering timing jitter after a dispersive line with arbitrary first- (beta(2)) and second-order (beta(3)) dispersion is computed in the small-signal approximation. Due to timing jitter noise, the initial radio-frequency spectrum shows noise bands whose bandwidth and position depend, respectively, on the jitter's standard deviation and on the jitter's pulse-to-pulse correlation. After setting the accumulated first-order dispersion to Talbot conditions, it is shown that the influence on the noise spectrum is a multiplicative factor with a multiple-bandpass structure. This factor depends on both the dispersive characteristics of the line and the pulse parameters, but not on the timing jitter's correlation properties, and represents the filtering mechanism responsible for Talbot repetition-rate multiplication. It is shown that the integer or fractional temporal Talbot effect does not worsen the timing properties of the initial train. In addition, and depending on the type of jitter correlation, the pulse width, and the total dispersion, it is shown that the temporal Talbot effect may lead to significant jitter reduction. The theory is exemplified by use of simulations. The applicability of the model to practical situations is also analyzed.  相似文献   

3.
4.
Optical fibre transmission systems operate in the presence of inter-symbol interference (ISI) caused by chromatic dispersion (CD), polarization-mode dispersion (PMD), and other impairments. As the transmission rate increases, ISI mitigation becomes mandatory. Many schemes for dispersion compensation have been proposed. We present and discuss a new optical method for post-compensating the chromatic dispersion in a particular dispersive medium, namely the single mode fibre. This method is based on the self-imaging phenomenon known as the temporal Talbot effect. The main advantage of our method results in using standard optical fibres instead of special fibres. We also have all freedom in subdividing and processing sequences of the dispersed optical signal.  相似文献   

5.
Ngo NQ  Binh le N 《Applied optics》2007,46(17):3546-3560
What is believed to be a new approach for the design and analysis of a reconfigurable optical square pulse generator using the concept of temporal optical integration and the digital signal processing method is presented. The reconfigurable square pulse generator is synthesized using compact active semiconductor-based waveguide technology, and it consists simply of the cascade of a tunable microring resonator (or a tunable all-pole filter) and a tunable asymmetrical Mach-Zehnder interferometer (or a tunable all-zero filter). The reconfigurable generator can convert an input picosecond pulse (i.e., soliton or Gaussian pulse) into an optical square pulse. The pulse width of the generated square pulse can be adjusted by controlling the time delay of a variable delay element in the tunable all-zero filter. The reconfigurable generator can convert an input picosecond pulse train into return-to-zero (RZ) and non-return-to-zero (NRZ) signals with square pulse shapes. The repetition rates of the generated RZ and NRZ signals can be varied by adjusting the bit period of the input picosecond pulse train, the input pulse width, and the time delay of the variable delay element. The effect of the deviation of the parameter values on the generator performance is also studied.  相似文献   

6.
7.
We present what we believe is a new method to introduce self-imaging properties under dispersive transmission of single or multiple light pulses with different temporal characteristics. By properly performing a temporal filtering into a given input signal it can produce an output signal having a spectral content satisfying the Montgomery condition, thereby allowing self-imaging of this signal under further dispersive transmission. An array of fiber loops performs the filtering operation on the input signal. We show some numerical simulations with a single light pulse as an input signal to verify the feasibility of the method and demonstrate the effects of the several involved parameters on both the pulse shape and the noise level.  相似文献   

8.
Le Cren E  Lobo S  Fève S  Simon JC 《Applied optics》2006,45(26):6831-6838
We observe the effects of a temperature increase on the characteristics of an InGaAs/InP multiple-quantum-well (MQW) saturable absorber (SA) in a microcavity provided by an optical input signal under normal incidence. The temperature increase on the nonlinear mirror (NLM) due to an optical signal depends on the energy time filling factor (FF) of this input signal (analogous to the signal's duty cycle, which is the ratio between the repetition period and the pulse duration) and hence depends on the repetition rate of the signal for a given pulse time width. This increase in temperature is mostly responsible for a shift in the reflectivity spectrum of the device toward higher wavelengths. In this experimental study, we show the shift of the resonance cavity versus the optical input power at high FF, and we evaluate the thermal time constant of an Fe-doped InGaAs/InP MQW NLM. Finally, we report the consequences of such thermal effects and high fluence on the reflectivity and contrast of two different InGaAs/InP NLMs when the input signal FF rises up to 25%, which gets close to telecommunication transmission conditions.  相似文献   

9.
The analogy between free-space propagation of optical beams and light-pulse reflection from linearly chirped fiber gratings is used to analyze the Lau effect in the temporal domain. The coherence conditions that are satisfied in the spatial domain for obtaining, at certain fixed locations, periodic fringes patterns are reformulated for guided light propagation. In this analogy, spatial periodic irradiance distributions are transformed in periodic sequences of light pulses. An optical setup is proposed to produce sharp pulse trains, with minimal distortion effects, that have repetition frequencies that are different from those associated with the input periodic optical signal. Some numerical results are given to illustrate this approach.  相似文献   

10.
Hamada H 《Applied optics》2007,46(18):3843-3849
We report a theoretical and numerical study of self-imaging properties, including time domain and pulse spreading, caused by modal group-delay dispersion in generalized N x N multimode interference devices achieved by using a mode-propagation analysis and finite-difference time-domain method. It was found that the spatial self-imaging condition does not realize temporal self-imaging but lets waveforms separate whose shape depends on input position and input field distribution. Pulse spreading, which is sensitive to beam diameter, has a very large variation (420 fs) among input positions as well as rising to a very high 900 fs in response to a 21 fs and spatially Gaussian pulse for the conveniently smallest size with 10 channels.  相似文献   

11.
A simple magnetoacoustic storage correlator was utilized as a pulse compressor in an ultrasonic nondestructive testing application. The pulse compression ratio reached was 30, which the theoretical maximum obtainable with our experimental parameters. Much higher compression ratios are readily available through choice of different device lengths. The system offers good flexibility; it is not limited to any particular type of large time-bandwidth signal. The correlator reference signal is easily programmable and erasable, and can be changed at any time. Unlike digital pulse compressors, this system offers real time correlation signal processing at a repetition rate that is only limited by the temporal length of the large time-bandwidth signal  相似文献   

12.
Wu B  Hajjarian Z  Kavehrad M 《Applied optics》2008,47(17):3168-3176
Free space optical communications (FSOC) is a method by which one transmits a modulated beam of light through the atmosphere for broadband applications. Fundamental limitations of FSOC arise from the environment through which light propagates. This work addresses transmitted light beam dispersion (spatial, angular, and temporal dispersion) in FSOC operating as a ground-to-air link when clouds exist along the communications channel. Light signals (photons) transmitted through clouds will interact with the cloud particles. Photon-particle interaction causes dispersion of light signals, which has significant effects on signal attenuation and pulse spread. The correlation between spatial and angular dispersion is investigated as well, which plays an important role on the receiver design. Moreover, the paper indicates that temporal dispersion (pulse spread) and energy loss strongly depend on the aperture size of the receiver, the field-of-view (FOV), and the position of the receiver relative to the optical axis of the transmitter.  相似文献   

13.
Wang W  Liu Y  Xi P  Ren Q 《Applied optics》2010,49(35):6703-6709
Short pulses can induce high nonlinear excitation, and thus they should be favorable for use in multiphoton microscopy. However, the large spectral dispersion can easily destroy the advantages of the ultrashort pulse if there is no compensation. The group delay dispersion (GDD), third-order dispersion, and their effects on the intensity and bandwidth of second-harmonic generation (SHG) signal were analyzed. We found that the prism pair used for compensating the GDD of the two-photon microscope actually introduces significant negative high-order dispersion (HOD), which dramatically narrowed down the two-photon absorption probability for ultrashort pulses. We also investigated the SHG signal after GDD and HOD compensation for different pulse durations. Without HOD compensation, the SHG efficiency dropped significantly for a pulse duration below 20 fs. We experimentally compared the SHG and two-photon excited fluorescence (TPEF) signal intensity for 11 fs versus 50 fs pulses, a pulse duration close to that commonly used in conventional multiphoton microscopy. The result suggested that after adaptive phase compensation, the 11fs pulse can yield a 3.2- to 6.0-fold TPEF intensity and a 5.1-fold SHG intensity, compared to 50 fs pulses.  相似文献   

14.
Wu B  Marchant B  Kavehrad M 《Applied optics》2007,46(25):6442-6448
Free-space optical communication (FSOC) is used to transmit a modulated beam of light through the atmosphere for broadband applications. Fundamental limitations of FSOC arise from the environment through which light propagates. We address transmitted light signal dispersion (spatial, angular, and temporal dispersion) in FSOC that operates in the battlefield environment. Light signals (photons) transmitted through the battlefield environment will interact with particles of man-made smoke such as fog oil, along the propagation path. Photon-particle interaction causes dispersion of light signals, which has significant effects on signal attenuation and pulse spread. We show that physical properties of battlefield particles play important roles in determining dispersion of received light signals. The correlation between spatial and angular dispersion is investigated as well, which has significant effects on receiver design issues. Moreover, our research indicates that temporal dispersion (delay spread) and the received power strongly depend on the receiver aperture size, field of view (FOV), and the position of the receiver relative to the optical axis of the transmitter. The results describe only specific scenarios for given types of battlefield particles. Generalization of the results requires additional work. Based on properties of the correlation, a sensitive receiver with a small FOV is needed that can find the line-of-sight photons and work with them.  相似文献   

15.
Marom DM  Sun PC  Fainman Y 《Applied optics》1998,37(14):2858-2868
We analyze parallel-to-serial transmitters and serial-to-parallel receivers that use ultrashort optical pulses to increase the bandwidth of a fiber-optic communication link. This method relies on real-time holographic material for conversion of information between spatial and temporal frequencies. The analysis reveals that the temporal output of the pulses will consist of chirped pulses, which has been verified experimentally. When the signal pulses are transmitted along with a reference pulse, the distortions of the received signal, caused by dispersion and other factors in the fiber, are canceled because of the phase-conjugation property of the receiver. This self-referencing scheme simplifies the receiver structure and ensures perfect timing for the serial-to-parallel conversion.  相似文献   

16.
The time resolution of an electron beam testing system (EBT) is mainly related to the primary electron (PE) sampling pulse width. Signal deconvolution techniques are available to enhance the time resolution of the system, provided the PE pulse shape is known with high accuracy. While for high energies this shape has already been evaluated, for the low energies commonly used in MOS IC testing, some additional difficulties must be accounted for, such as increased PE beam spot dispersion, charge trapping into passivation oxides, and lower SIN ratio at the detector. Here, we describe the direct measurement of the PE current used to sample internal voltage waveforms through the use of a fast avalanche photodiode. A numerical simulation has also been performed to help in the correct interpretation of the results. Using a known signal as an input to a matched-impedance microstrip line, a numerical deconvolution technique has been applied to the signal sampled by finite-duration current pulses to evaluate the goodness of the restoration of the original signal  相似文献   

17.
We analyze a new regime in the interaction between an optical pulse and a time lens (spectral Fraunhofer regime), where the input pulse amplitude is mapped from the time domain into the frequency domain (time-to-frequency conversion). Here we derive in detail the conditions for achieving time-to-frequency conversion with a single time lens (i.e., for entering the spectral Fraunhofer regime) as well as the expressions governing this operation. Our theoretical findings are demonstrated both numerically and experimentally. A comparative study between the proposed single-time-lens configuration and the conventional dispersion + time-lens configuration for time-to-frequency conversion is also conducted. Time-to-frequency conversion with a single time lens can be used for applications similar to those previously proposed for the conventional time-to-frequency converters, e.g., high-resolution measurement of fast optical temporal waveforms. Moreover, our results also indicate that the spectral Fraunhofer regime provides additional capabilities for controlling and processing optical pulses.  相似文献   

18.
Based on a modified coupled wave theory, the pulse shaping properties of volume holographic gratings (VHGs) in anisotropic media VHGs are studied systematically. Taking photorefractive LiNbO(3) crystals as an example, the combined effect that the grating parameters, the dispersion and optical anisotropy of the crystal, the pulse width, and the polarization state of the input ultrashort pulsed beam (UPB) have on the pulse shaping properties are considered when the input UPB with arbitrary polarization state propagates through the VHG. Under the combined effect, the diffraction bandwidth, pulse profiles of the diffracted and transmitted pulsed beams, and the total diffraction efficiency are shown. The studies indicate that the properties of the shaping of the o and e components of the input UPB in the crystal are greatly different; this difference can be used for pulse shaping applications.  相似文献   

19.
Behind periodic amplitude or phase objects, the object transmittance is repeated at the so-called Talbot distances. In these planes perpendicular to the propagation direction, Talbot self-images are formed. In the case of plane wave illumination, the distances between the self-images are equally spaced. A periodic pattern called optical carpet or Talbot carpet is formed along the propagation direction. We show theoretically how the presence of spherical particles (10 to 100 μm in diameter) behind gratings of 20 and 50 μm period affects the formation of Talbot carpets and Talbot self-images at 633 nm illumination wavelength. The scattering of the particles is modeled by the Fresnel diffraction of its geometrical shadow. We analytically calculate the interference of the diffraction orders of rectangular and sinusoidal amplitude gratings disturbed by the presence of particles. To verify our model, we present measurements of Talbot carpets perturbed with both opaque disks and transparent spheres, and discuss the effects for various size parameters. We present an approach to simulate the movement of particles within the Talbot pattern in real time. We simulate and measure axial and lateral particle movements within a probe volume and evaluate the effect on the signal formation in a Talbot interferometric setup. We evaluate the best system parameters in terms of grating period and particle-detector-distance for a prospective measuring setup to determine characteristics of flowing suspensions, such as particle volume concentration or particle size distribution.  相似文献   

20.
We use an adaptive photodetector for measuring the visibility of the Fresnel diffraction patterns generated by a grating. Visibility is measured in real time, with high spatial resolution, and without any signal processing. This method is well suited for analyzing the Talbot effect and its many applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号