首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
独立分量分析是近年来发展起来的一门新的数字信号处理方法,因为不需要知道信号的先验信息而得到广泛应用。论文简单介绍了ICA的原理及EASI算法,并根据神经网络理论提出一种改进的EASI语音分离算法。  相似文献   

2.
《电子技术应用》2013,(1):116-118
在系统研究独立分量分析基本原理、快速算法的基础上,提出了一种改进的独立分量分析快速算法。引入了一种综合考虑峰度和偏度的新的简单目标函数,并对独立分量分析的快速算法流程提出了改进。改进的算法在图像盲分离中得到了应用。实验结果表明,该算法显著提高了独立分量分离效果。  相似文献   

3.
钟静  傅彦 《计算机应用》2006,26(5):1120-1121
介绍了独立分量分析的原理、算法及其特点。考虑到在语音分离中,声音信号复杂多样,但是不同语音源信号保持相对独立的特点,利用盲信号分离的思想,使用改进的FastICA方法用于语音信号分离,以获得独立的声音文件。文中使用两个声音文件做实验,取得了比较满意的效果。  相似文献   

4.
背景噪声下的语音信号分离   总被引:1,自引:0,他引:1       下载免费PDF全文
云晓花  景新幸 《计算机工程》2011,37(23):181-182,185
独立分量分析法在分离含有背景噪声的混合语音时效果不理想。为此,将独立分量分析算法与卡尔曼滤波相结合,对语音进行降噪处理,采用FastICA算法对含噪语音进行分离,分离速率高于Informax算法,能够获得较清晰的语音文件。通过仿真验证了该方法的可行性和有效性。  相似文献   

5.
基于盲源分离的单通道语音信号增强   总被引:1,自引:0,他引:1  
在运用基于独立分量分析(ICA)的盲源分离法进行语音增强时,要求观测信号(含噪语音)的个数不少于源信号(纯净语音和噪声)的个数.由于含噪语音通常是单通道的,所以必须合理地生成另一路的虚拟观测信号,以实现纯净语音和噪声的分离是个关键.介绍了一种基于盲源分离和谱减法的单通道语音信号增强的方法.首先运用谱减法对语音进行部分去噪,产生了ICA其中的一路观测信号,并产生了对噪声的估计值.用语音和噪声估计值的帧平均能量构成了加权函数,将噪声的估计值与原始含噪语音进行加权组合,生成另一路的虚拟观测信号.由于虚拟观测信号很好地再现了实际的观测信号,所以运用ICA可以较好地实现了噪声和语音的分离.同时,盲源分离和谱减法相互结合,使语音增强的性能提高.实验证明了算法可以在信噪比很小的情况下实现对噪声的去除,其效果要优于传统的去噪算法.  相似文献   

6.
通过使用多波束形成器对盲分离系统进行预处理滤波,结合频域内独立分量分析的方法,提出了一种基于麦克阵列的快速实时盲语音分离系统,它能够有效地分离在真实环境中的卷积混叠语音信号。  相似文献   

7.
FastICA工具可以用于直接叠加或提取的图像水印方案,文章采用了定量分析法选取嵌入矩阵,对水印嵌入不可见性有很大提高,PSNR达到68.55dB,且具有很好的鲁棒性。该图像水印算法进一步提出Inv(A)使提取算法用于直接叠加或提取的图像水印方案中,不仅成功解决了FastICA用于直接叠加或提取图像方案提取水印的两种不确定性问题,而且在一定程度上增强了鲁棒性。  相似文献   

8.
李加文  李从心 《计算机工程》2006,32(3):186-187,190
提出了一种基于非参数熵的图像盲分离新算法。该方法根据K—L散度作为信号之间独立性优化准则,不利用概率密度函数知识,由观测向量直接估计m—spacing熵,通过穷举搜索法寻找目标函数的最小值从而获得最佳旋转矩阵进行盲源分离,适合图像像素分布多样性特点。大量实验证实,该算法鲁棒性好、分离指标高、性能优于传统FASTICA、自然梯度等自适应算法。  相似文献   

9.
提出一种有效解决不相互独立语音源信号混合的分离算法.利用子带分解方法,将混合信号分解成多个子带信号,在各个子带上分别进行语音分离得出语音分离信号,利用提出的相关性能指数,判断出相互独立的子带信号,把该子带的分离矩阵作为混合信号的解混合矩阵对混合信号进行分离.实验证明了本算法对相关语音源信号较好的分离效果.  相似文献   

10.
基于FastICA算法的盲源分离   总被引:2,自引:0,他引:2  
近年来,ICA(Independent Component Analysis,独立成分分析)已成为处理BSS(Blind Source Separation,盲源分离)问题的主要手段,同时也受到人们越来越多的关注,为此讨论ICA的原理及其优越性.首先介绍ICA,然后引入FastICA算法的推导过程,最后通过MATLAB仿真将其与梯度算法、PCA(Principal Component Analysis,主成分分析)算法所得的仿真结果进行对比分析.通过算法验证,经FastICA处理得到的分离信号与源信号相关系数的绝对值不小于0.99,与其他两种算法比较可以明显地得到FastICA是一种更为有效的盲源分离方法.  相似文献   

11.
基于松弛因子改进FastICA算法的遥感图像分类方法   总被引:3,自引:1,他引:3  
多波段遥感图像反映了不同地物的光谱特征,其分类是遥感应用的基础.独立分量分析算法利用信号的高阶统计信息,去除了遥感图像各个波段之间的相关性,获得的波段图像是相互独立的.然而独立分量分析算法计算量太大,影响了其在多波段遥感图像分类上的应用.MFastICA算法可以改善FastICA算法的性能,减少计算量,但是同FastICA算法一样,其收敛依赖于初始权值的选择.在MFastICA算法中引入松弛因子,使算法可以实现大范围的收敛.应用BP神经网络对独立分量分析算法预处理后的图像进行自动分类,其分类精度比原始遥感图像的精度高,并且3种独立分量分析算法的最终分类性能相当.  相似文献   

12.
首先简单介绍了FastICA和RobustICA这两种目前最为常用的盲源分离两种算法, 并对这算法的目标函数以及优化算法进行了分析研究, 进一步对这两种算法的稳健性及算法复杂度等方面的性能进行分析比较。总的来看, RobustICA算法的综合性能要优于FastICA算法。  相似文献   

13.
以图像盲分离为背景,给出如何在小波变换下对盲源图像进行快速独立分量分析.通过探讨小波域中算法的的收敛特性,证实了小波域中算法能完美实现分离的原因,并通过实验验证了算法的有效性.  相似文献   

14.
一种改进的FastICA算法及其应用   总被引:6,自引:0,他引:6  
独立分量分析是基于信号高阶统计量的信号分析方法,它可以找到隐含在数据中的独立分量,已经广泛应用到语音信号处理、图像处理及信息通信等方面。目前应用较多的快速独立分量分析(FastICA)利用了牛顿迭代法原理,具有较快的收敛速度,但对初始值的选择比较敏感。为克服其缺点,改进其优化学习算法,在牛顿迭代方向增加一维搜索,使改进后的算法的收敛性不依赖于初始值的选择。将改进的FastICA算法应用到运动目标检测中,取得稳定性较强的结果。  相似文献   

15.
Photoshop是一个专业图像处理软件,它具有强大的图像处理功能。在广告、建筑、工业设计等领域都有广泛应用,尤其在创作中能进行必要的移植和嫁接。Photoshop中分离背景技术就是将图像中的某部分物体(目标)和背景分离开来。无疑分离背景技术是图像编辑的基础,掌握好图像分离背景的方法和技巧在图像编辑中有着重要的意义。  相似文献   

16.
 针对多点定位技术中广播式自动相关监视(ADS-B)1090ES信号脉冲交叉重叠的问题,提出一种改进的三阶收敛的牛顿迭代快速固定点(Fast ICA)算法,通过对多个ADS-B辐射源混合信号进行分离,恢复和重建原始信号,实现对目标源信号的提取。比较基本Fast ICA算法与改进Fast ICA算法的收敛速度,通过计算相似系数矩阵,分析该算法的分离性能。最后,通过仿真实验,验证了该算法的可行性和有效性,实验结果表明该算法具有较好的分离效果,收敛速度更快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号