首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three‐step grafting procedure has been used to graft the epoxy monomers (DER332) and the curing agents (diamino diphenyl methane (DDM), onto graphene oxide (GO) surface. The surface modification of GO has been performed by grafting of Jeffamine D‐2000, followed with subsequent grafting of DER332 and DDM, respectively. Fourier transform spectroscopy and thermogravimetric analysis indicate successful surface modification. The resulting modified GO, that is, (DED)‐GO, can be well dispersed in the epoxy monomers. The epoxy nanocomposites containing different GO contents can then be prepared through curing processes. The dispersion of GO in the nanocomposites is characterized by transmission electron microscopy. It is found that the tensile strength and elongation at break of epoxy nanocomposite with only 0.2 wt % DED‐GO are increased by 30 and 16% as compared with the neat epoxy resin, respectively. Dynamic mechanical analysis results show that 62% increase in storage modulus and 26°C enhancement in the glass transition temperature of the nanocomposite have been achieved with the incorporation of only 0.2 wt % of DED‐GO into the epoxy. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40236.  相似文献   

2.
Nanostructured thermosetting composites based on an epoxy matrix modified with poly(isoprene‐b‐methyl methacrylate) (PI‐b‐PMMA) block copolymer were prepared through PI block segregation. Morphological structures were examined by means of atomic microscopy force microscopy. As epoxy/pristine multi‐walled carbon nanotubes (MWCNT) systems were found to present big agglomerations, with a very poor dispersion of the nanofiller, epoxy/PI‐b‐PMMA/MWCNT systems were prepared by using polyisoprene‐grafted carbon nanotubes (PI‐g‐CNT) to enhance compatibility with the matrix and improve dispersion. It was found that the functionalization of MWCNT with grafted polyisoprene was not enough to totally disperse them into the epoxy matrix but an improvement of the dispersion of carbon nanotubes was achieved by nanostructuring epoxy matrix with PI‐b‐PMMA when compared with epoxy/MWCNT composites without nanostructuring. Nevertheless, some agglomerates were still present and the complete dispersion or confinement of nanotubes into desired domains was not achieved. Thermomechanical properties slightly increase with PI‐g‐CNT content for nanostructured samples, whereas for nonnanostructured epoxy/PI‐g‐CNT composites they appeared almost constant and even decreased for the highest nanofiller amount due to the presence of agglomerates. Compression properties slightly decreased with block copolymer content, while remained almost constant with nanofiller amount. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Pyrene end‐labeled star poly(?‐caprolactone)s (PCLs) with polyhedral oligomeric silsesquioxane (POSS) core were prepared by combination of copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) click chemistry and ring‐opening polymerization techniques. First, ?‐caprolactone (?‐CL) is polymerized by using 1‐pyrene methanol as initiator and stannous octoate as catalyst to obtain α‐pyrene‐ω‐hydroxyl telechelic PCL with different chain lengths. Then, its hydroxyl group is converted to acetylene functionality by esterification reaction with propargyl chloroformate. Finally, the CuAAC click reaction of α‐pyrene‐ω‐acetylene telechelic PCL with POSS‐(N3)8 leads to corresponding pyrene end‐labeled star‐shaped PCLs. The successful synthesis of pyrene end‐labeled star polymers is clearly confirmed by 1H‐nuclear magnetic resonance, Fourier transform infrared, gel permeation chromatograph, differential scanning calorimeter, and thermogravimetric analysis. Furthermore, non‐covalent interactions of obtained star polymers with fullerene are investigated in liquid media. Based on Raman spectroscopy and visual investigations, the star polymer having shorter chain length exhibited better and more stable dispersion with fullerene. The amount of pyrene units present per polymer chains can directly influence the dispersion stability of fullerene. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46520.  相似文献   

4.
Ethylenediamine (EDA) covalently functionalized graphene sheets (GS‐EDA) and acidized carbon nanotubes (MWNTs‐COOH) were first prepared, followed by synthesizing l ‐aspartic acid functionalized GS‐EDA/MWNTs‐COOH (LGC) hybrid nanomaterials by using l ‐aspartic acid as a bridging agent. Then nanocomposites of high density polyethylene‐g ‐maleic anhydride (HDPE‐g ‐MAH) synergistic strengthening–toughening using LGC hybrids were prepared via melt compounding method. The surface structure of filler was characterized by using infrared (FTIR) and Raman spectrum. The synergistic strengthening–toughening effects of LGC hybrids on the HDPE‐g ‐MAH were investigated by scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), thermal gravimetric analysis (TGA), tensile, and impact tests. FTIR showed that EDA has been grafted on the graphene sheets, and ? COOH group has been introduced into MWNTs. The l ‐aspartic acid connected GS‐EDA and MWNTs‐COOH through chemical bonds. SEM observations showed that LGC hybrids were homogeneously dispersed in HDPE‐g ‐MAH nanocomposites. Tensile and impact tests indicated that the mechanical properties of nanocomposites were improved obviously when LGC hybrid nanomaterials were incorporated simultaneously. DMA analysis indicated that the storage modulus of composites was higher than that of pure HDPE‐g ‐MAH matrix. TGA results revealed that the maximum decomposition temperature of HDPE‐g ‐MAH composites containing 0.75 wt % of LGC showed 11.5 °C higher than that of HDPE‐g ‐MAH matrix. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45055.  相似文献   

5.
In this work, multi‐walled carbon nanotubes (MWCNT) and poly(methyl methacrylate) (PMMA) pellets were compounded via corotating twin‐screw extruder. The produced MWCNT/PMMA nanocomposite pellets were injection molded. The effect of MWCNT concentration, injection melt temperature and holding pressure on mechanical properties of the nanocomposites were investigated. To examine the mechanical properties of the MWCNT/PMMA nanocomposites, tensile test, charpy impact test, and Rockwell hardness are considered as the outputs. Design of experiments (DoE) is done by full factorial method. The morphology of the nanocomposites was performed using scanning electron microscopy (SEM). The results revealed when MWCNT concentration are increased from 0 to 1.5 wt %, tensile strength and elongation at break were reduced about 30 and 40%, respectively, but a slight increase in hardness was observed. In addition, highest impact strength belongs to the nanocomposite with 1 wt % MWCNT. This study also shows that processing condition significantly influence on mechanical behavior of the injection molded nanocomposite. In maximum holding pressure (100 bar), the nanocomposites show highest tensile strength, elongation, impact strength and hardness. According to findings, melt temperature has a trifle effect on elongation, but it has a remarkable influence on tensile strength. In the case of impact strength, higher melt temperature is favorable. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43738.  相似文献   

6.
P(AN‐co‐VA‐co‐DEMA) terpolymers were synthesized by aqueous precipitation copolymerization of acrylonitrile (AN), vinyl acetate (VA), and 2‐dimethylamino ethyl methacrylate (DEMA) with an Na2S2O5–NaClO3 redox initiating system and fibers from these terpolymers were thus prepared by a wet spinning method. Functionalized multiwalled carbon nanotube (F‐MWNT) networks were created on the surface of P(AN‐co‐VA‐co‐DEMA) fibers by a simple dipping method. The morphology and interfacial interactions of the obtained F‐MWNTs‐coated fibers were characterized by scanning electron microscope, Raman spectroscopy, and Fourier transform infrared spectroscopy. The results showed that F‐MWNTs were assembled on the fibers and the density of F‐MWNTs can be controlled by adjusting the F‐MWNTs content in the dipping solution. The assembly process was driven by electrostatic interactions between the negative charges on the nanotube sidewalls and the positive charges of the fibers. The F‐MWNTs‐coated fibers had a good conductivity. The volume resistivity of the fibers coated with 1.18 wt % F‐MWNTs reached 0.27 Ω·cm, while the original mechanical properties were preserved. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42545.  相似文献   

7.
Carbon nanotubes (CNTs) have seen increased interest from manufacturers as a nanofiber filler for the enhancement of various physical and mechanical properties. A major drawback for widespread commercial use has been the cost associated with growing, functionalizing, and incorporating CNTs into commercially available polymeric matrices. Accordingly, the main objective of this study was to investigate the effects of adding commercially viable functionalized multiwalled carbon nanotubes (MWCNT) to a commercially available epoxy matrix. The mechanical behavior of the nanocomposites was investigated by mechanical testing in tensile mode and fractures were examined by scanning electron microscopy. The thermal behavior was investigated by differential scanning calorimetry and thermogravimetric analysis. Molecular composition was analyzed by attenuated total reflectance Fourier transform infrared spectroscopy. Mechanical testing of the epoxy/functionalized‐MWCNT indicated that the 0.15 wt % functionalized MWCNT composite possessed the highest engineering stress and toughness out of the systems evaluated without affecting the Young's modulus of the material. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
The surface chemistry and structure of multiwalled carbon nanotube (MWCNT) plays an important role in MWCNT/epoxy nanocomposites. In this contribution, oxidized multiwalled carbon nanotube (OMCNT) with tunable oxygen-containing groups is prepared by finely controlling oxidation time and centrifugal speeds. Effects of oxygen-containing group content on mechanical properties of the OMCNT/E51 epoxy nanocomposites at 77 K are investigated in detail. It reveals that oxygen-containing groups on the OMCNT surface contribute to significant increases in tensile strength and impact resistance of the OMCNT/E51 epoxy nanocomposites compared with those of the pristine MWCNT/E51 nanocomposites. A positive correlation between the oxygen-containing group content and interfacial properties of OMCNT and epoxy matrix is demonstrated by thermogravimetric analysis and fracture morphology, and homogeneous dispersion of the OMCNT in epoxy matrix is obtained with the increase of oxygen-containing groups on surface of the OMCNT. However, proper content of oxygen-containing groups is essential to OMCNT/E51 nanocomposites because excessive oxidation tends to make sever structural defects on the OMCNT and has a side effect on cryogenic mechanical properties of OMCNT/E51 nanocomposites.  相似文献   

9.
Multi‐walled carbon nanotube (MWCNT) was non‐covalently functionalized with room‐temperature ionic liquid (IL), 1‐butyl‐3‐methyl‐imidazolium tetrafluoroborate and blended with epoxy pre‐polymer (ER) with the assistance of ultrasonication in the presence of acetone as a diluting medium. The ability of IL in improving the dispersion of MWCNT in epoxy pre‐polymer was evidenced by transmission optical microscopy. The corresponding epoxy/MWCNT networks cured with anhydride displayed an increase of the electrical conductivity of around three orders of magnitude with the addition of IL in a proportion of MWCNT/IL = 1:5 mass ratio. The effect of IL on dynamic mechanical properties and thermal conductivity was also evaluated. The improved thermal and electrical properties was attributed to the better dispersion of MWCNT within the epoxy matrix by IL, evidenced by transmission electron microscopy of the ER/MWCNT networks cured with anhydride. Raman spectroscopy was also used to confirm the interaction between MWCNT and IL. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43976.  相似文献   

10.
In this study, multiwall carbon nanotubes (MWNTs) functionalized by m‐xylylenediamine is used as thermal conductive fillers to improve their dispersibility in epoxy resin and the thermal conductivity of the MWNTs/bisphenol‐A glycidol ether epoxy resin composites. Functionalization with amine groups of MWNTs is achieved after such steps as carboxylation, acylation and amidation. The thermal conductivity, impact strength, flexural strength, and fracture surfaces of MWNTs/epoxy composites are investigated with different MWNTs. The results show that m‐xylylenediamine is successfully grafted onto the surface of the MWNTs and the mass fraction of the organic molecules grafted onto MWNTs is about 20 wt %. The thermal conductivity of MWNTs/epoxy composites is further enhanced to 1.236 W/mK with 2 wt % m‐MWNTs. When the content of m‐MWNTs is 1.5 wt %, the impact strength and flexural strength of the composites are 25.85 KJ/m2, 128.1 MPa, respectively. Scanning electron microscope (SEM) results show that the fracture pattern of composites is changed from brittle fracture to ductile fracture. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41255.  相似文献   

11.
The mechanical and fracture properties of vinyl‐ester composites reinforced with halloysite nanotubes have been investigated. Enhancements in toughness are attributed to crack bridging, deflection, and localized plastic deformation, while strength improvements can be attributed to the large aspect ratio of fillers, favorable interfacial adhesion and dispersion, and inter‐tubular interaction. Comparisons of experimental data on elastic modulus and mathematical models for predicting particulate polymer composites have verified the models of Paul and Guth. The aspect ratio of fillers and the degree of interfacial adhesion are crucial factors in the prediction of elastic modulus in these polymer nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1716–1725, 2013  相似文献   

12.
The preparation of high‐dielectric poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) (SEBS) composites containing functionalized single‐walled carbon nanotubes (f‐SWCNTs) noncovalently appended with dibutyltindilaurate are reported herein. Transmission electron microscopy and X‐ray photoelectron and Raman spectroscopy confirmed the noncovalent functionalization of the SWCNTs. The SEBS‐f‐SWCNT composites exhibited enhanced mechanical properties as well as a stable and high dielectric constant of approximately 1000 at 1 Hz with rather low dielectric loss at 2 wt% filler content. The significantly enhanced dielectric property originates from the noncovalent functionalization of the SWCNTs that ensures good dispersion of the f‐SWCNTs in the polymer matrix. The f‐SWCNTs also acted as a reinforcing filler, thereby enhancing the mechanical properties of the composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Multiwall Carbon Nanotubes (MWCNT) with an elevated aspect ratio were chemically functionalized with amines and two types of epoxide groups. Thermogravimetric analysis and Fourier Transform‐Infrared Spectroscopy (FTIR) analysis corroborated that the functionalization degree was substantial (up to 30 wt %) and the presence of a covalent bond with the MWCNT. The functionalized MWCNT (f‐CNT) were incorporated into an epoxy matrix after its dispersion in the diglycidyl ether of bisphenol A (DGEBA) precursor. To induce a shear failure mode, a short‐beam (SB) experimental setup was implemented. The SB shear strength (SBSS) proved that the functionalization had a strong influence on its value. For the case of pristine CNT, a neutral effect was obtained. A strong detrimental effect (?17.2% ± 9.5) was measured for the amine type f‐CNT and a positive effect (up to 10.9% ± 8.9) was measured of the epoxide type f‐CNT. Fractographic analysis of each formulation was correlated with SBSS performance, proving that the surface texture of the fractured samples was strongly correlated to its value. Furthermore, dynamic mechanical analysis proved that the damping factor and the crosslink molecular weight were correlated with the SBSS performance. A lower full width at half maximum of the damping factor was associated to an improvement of SBSS. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41364.  相似文献   

14.
Structure and properties of polymer compositions based on carbon nanotubes (CNTs) filled epoxy matrix containing fluorosilicone copolymers as additives is discussed. Electrical conductivity and dielectric (microwave) permittivity of the composites can be varied by approximately one order of magnitude without changing the CNT concentration, by careful selection of the additive type and concentration. The mutual solubility of the modifiers and epoxy is a key factor determining both rheological properties of the uncured compositions and electrical properties of cured CNT‐nanocomposites. CNT‐nanocomposites modified with amino‐functional (i.e., epoxy crosslinkable) copolymers demonstrate improved electrical conductivity values at increased additive concentration, connected with the formation of specific segregated microstructure. Fluorosilicone additives added in a specific amount also allow for a decrease of the viscosity of uncured epoxy CNT‐nanocomposites, improving their processability. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46539.  相似文献   

15.
The driver for this study is the observation that heating of carbon nanotubes (CNTs) with electromagnetic field can offer a more efficient and cost‐effective alternative in heat transfer for the production of composites. The idea of this study is twofold; CNT can work as microwave (MW) radiation susceptors and they can act as nanoreinforcements in the final system. To test these assumptions, a household oven was modified to control the curing schedule. Polymers with different CNT concentrations were prepared (0.5 and 1.0 wt %). The dispersion of the CNTs in the epoxy was achieved using shear‐mixing dissolver technique. MW and conventionally cured specimens were also produced in a convection oven for reference. Thermal and mechanical tests were used as control point. A curing schedule investigation was further performed to quantify the energy and time‐saving capabilities using CNT and MWs. The presence of CNTs into epoxy matrix has been proven beneficial for the shortening of the curing time. MW‐cured composites showed the same degree of polymerization with the conventionally cured composites in a shorter time period and this time was reduced as the CNT concentration was increased. A good distribution of the CNT is required to avoid hot spot effects and local degradation. Mechanical performance was, in some cases, favored by the use of CNT. The benefit from the use of MWs and CNT could reach at least 40% in terms of energy needed and time without sacrificing mechanical performance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Three‐dimensional fluorinated pentablock poly(l ‐lactide‐co‐ε‐caprolactone)‐based scaffolds were successfully produced by the incorporation of thermally exfoliated graphene oxide (TEGO) as an antimicrobial agent with an electrospinning technique. In a ring‐opening polymerization, the fluorinated groups in the middle of polymer backbone were attached with a perfluorinated reactive stabilizer having oxygen‐carrying ability. The fiber diameter and its morphologies were optimized through changes in TEGO amount, voltage, polymer concentration, and solvent type to obtain an ideal scaffold structure. Instead of the widely used graphene oxide synthesized by Hummer's method, TEGO sheets having a low amount of oxygen produced by thermal expansion were integrated into the fiber structure to investigate the effect of the oxygen functional groups of TEGO sheets on the degradation and antimicrobial activity of the scaffolds. There was no antimicrobial activity in TEGO‐reinforced scaffolds in the in vitro tests in contrast to the literature. This study confirmed that a low number of oxygen functional groups on the surface of TEGO restricted the antimicrobial activity of the fabricated composite scaffolds. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43490.  相似文献   

17.
An experimental study is carried out to quantitatively assess the dispersion quality of carbon nanotubes (CNTs) in epoxy matrix as a function of CNT variant and weight fraction. To this end, two weight fractions (0.05% and 0.25%) of as-grown, oxidized, and functionalized CNTs are used to process CNT/epoxy nanocomposites. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared analysis of different variants of CNTs are used to establish the efficiency of purification route. While the relative change in mechanical properties is investigated through tensile and micro-hardness testing, thermal conductivity of different nanocomposites is measured to characterize the effect of CNT addition on the average thermal properties of epoxy. Later on, a quantitative analysis is carried out to establish the relationship between the observed improvements in average composite properties with the dispersion quality of CNTs in epoxy. It is shown that carboxylic (-COOH) functionalization reduces the average CNT agglomerate size and thus ensures better dispersion of CNTs in epoxy even at higher CNT weight fraction. The improved dispersion leads to enhanced interfacial interaction at the CNT/epoxy interface and hence provides higher relative improvement in nanocomposite properties compared to the samples prepared using as-grown and oxidized CNTs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48879.  相似文献   

18.
In this work, the influence of tungsten disulfide nanotubes (INT‐WS2) on the mechanical, thermal, structural, and morphological characteristics of Polypropylene‐graft‐maleic anhydride (PPGMA) nanocomposites is investigated. The addition of 5% INT‐WS2 increases the Young's Modulus by 28.5% and the storage modulus by 196.5% (in the rubbery state). Furthermore, the nanocomposites' thermal stability increases (up to 10 °C) with the addition of INT‐WS2. Transmission electron microscopy observations of the nanocomposites revealed that nanotubes' length is significantly reduced during processing and that nanotubes are well‐dispersed inside the PPGMA matrix. DSC results indicated that INT‐WS2 serve as nucleating agents in PPGMA. Moreover, AFM observations (coupled with DSC results) suggested the formation of fibrillar crystallites in the nanocomposites. This interfacial crystalline structure seems to interpose between the PPGMA and INT‐WS2. Thus, it plays a crucial role in the load transfer from the amorphous part of the polymer to the rather stiff INT‐WS2. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43887.  相似文献   

19.
The performance of wind turbines suffers from icing in regions with extreme climate. One approach is to incorporate heating elements into the most susceptible areas of the wind turbine blade as protection against icing and for de‐icing. Cost‐efficient and reproducible fabrication, as well as easy integration is important due to the large area of wind turbine blades. In this work, multi‐walled carbon nanotubes are applied on a 50% poly(ethylene terephthalate) and 50% polyamide non‐woven textile substrate by rotary‐screen printing. The printed layers function as resistive heating elements in a fiber‐reinforced composite. The heating areas are provided with flexographic or screen inline‐printed silver‐electrodes and can be integrated by means of vacuum infusion into a glass fiber‐reinforced epoxy composite laminate. These laminates, which are connected to an intelligent electrical control system, are suitable for melting ice on the surface of components or for preventing the formation of ice. The first promising experiments on heating structures in a rotor blade of a wind turbine at laboratory scale (2 m length) are the basis of studies on intelligent electrical control of heating structures and their behavior at different temperatures. The heating elements were able to melt a 3–4 mm thick ice layer within 25 min in a climate chamber at ?5 °C. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45950.  相似文献   

20.
Graphene nanoplatelets (GNPs) have excellent thermal, electrical, and mechanical properties. The incorporation of GNPs into a polymer can remarkably enhance the thermal and mechanical properties of the polymer especially when GNPs are well dispersed in the polymer matrix with strong interfacial bonding. Therefore, in this study, GNPs were amine‐functionalized by covalently bonding 4,4′‐methylene dianiline onto their surfaces via a facile synthetic route. The amine‐functionalization was confirmed by FTIR spectroscopy and TGA. Epoxy/GNPs nanocomposites were prepared and their curing behavior, thermomechanical properties and impact strength were investigated. The amine‐functionalization increased curing rate, storage modulus, thermal dimensional stability, and impact strength of the nanocomposites. The SEM images for the fracture surface of the nanocomposite with amine‐functionalized GNPs showed a smooth and ductile failure‐like surface, resulted from the improved interfacial bonding between GNPs and the epoxy matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42269.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号