首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The optically transparent poly(methyl methacrylate‐co‐maleic anhydride) P(MMA‐co‐MA)/SiO2? TiO2 hybrid materials were prepared using 3‐aminopropyl triethoxysilane as a coupling agent for organic and inorganic components. Real‐time FTIR was used to monitor the curing process of hybrid sol, indicating that imide group formation decreased with increasing titania content. scanning electron microscopy, atomic force microscopy, and differential scanning calorimetry results confirmed their homogeneous inorganic/organic network structures. TGA analysis showed that incorporated titania greatly prohibits the thermodegradation of hybrid films, especially at the content of 5.3 wt %, showing an increase of about 32.6°C at 5% loss temperature in air. The UV degradation behavior of P(MMA‐co‐MA) studied by quasi‐real‐time FTIR showed that TiO2 incorporated in the hybrid network provides a photocatalytic effect rather than a UV‐shielding effect. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1714–1724, 2005  相似文献   

2.
Cu2+ can oxidize amines to generate radicals to initiate radical polymerization of electron‐deficient monomers under mild conditions. Here, CuSO4‐catalyzed redox‐initiated radical polymerizations of methyl methacrylate from amino‐functionalized TiO2 nanoparticles (TiO2‐NH2 nanoparticles) was performed to prepare TiO2 nanoparticles grafted with poly(methyl methacrylate) (TiO2g‐PMMA hybrid nanoparticles) in dimethylsulfoxide or N,N‐dimethylformamide at 90°C. Infrared spectroscopy, thermogravimetric analysis, and X‐ray photoelectron spectroscopy confirmed the presence of the grafted PMMA and the grafting yield was about 50 wt%. Microscopy and particle‐size analysis indicated that TiO2g‐PMMA nanoparticles had a good affinity to organic media. Because only aminyl radical (? NH?) on TiO2 nanoparticles formed in Cu2+‐amine redox‐initiation step, there was no free PMMA chains formed during polymerization. Thus, our protocol provides a facile strategy to prepare inorganic/organic hybrid nanoparticles via one‐pot Cu2+‐amine redox‐initiated free radical polymerization. POLYM. ENG. SCI., 55:735–744, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
A series of sol‐gel derived organic–inorganic hybrid materials consisting of organic poly(methyl methacrylate) (PMMA) and inorganic titania (TiO2) were successfully synthesized by using 2‐hydroxyethyl methacrylate (HEMA) as coupling agent. In this work, HEMA is first copolymerized with methyl methacrylate monomer at specific feeding ratios by using benzoyl peroxide (BPO) as initiator. Subsequently, the as‐prepared copolymer (i.e., sol‐gel precursor) is then cohydrolyzed with various contents of titanium butoxide to afford chemical bondings to the forming titania networks to give a series of hybrid materials. Transparent organic–inorganic hybrid materials with different contents of titania are always achieved. Effects of the material composition on the thermal stability, optical properties, and morphology of neat copolymer and a series of hybrid materials, in the form of both coating and free‐standing film, are also studied by differential scanning calorimetry, thermogravimetric analysis, UV–Vis transmission spectra, refractometer, and atomic force microscopy, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 400–405, 2004  相似文献   

4.
The high/low refractive index organic/inorganic antireflective (AR) hybrid polymers were formed using the sol–gel process, in which TiO2/2‐hydroxyethyl methacrylate (2‐HEMA) (high refractive index hybrid polymer) and SiO2/2‐HEMA (low refractive index hybrid polymer) two‐layer thin films were formed on a hard coating deposited poly(methyl methacrylate) (HC‐PMMA) substrate by both spin coating and dip coating. The relationship between the process parameters and the optical properties, thickness, porosity, surface morphology, and adhesion was determined. The results show that the reflectance of the two‐layer thin films on HC‐PMMA substrate is less than 0.21% (λ = 550 nm), with good adhesion (5B) and a hardness of up to 4H. In addition, the thickness, porosity, and roughness of the films affect refractive index and the antireflection properties of the AR two‐layered thin film. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
The current study establishes the unprecedented involvement in the evolution and production of novel core–shell nanocomposites composed of nanosized titanium dioxide and aniline‐o‐phenylenediamine copolymer. TiO2@copoly(aniline and o‐phenylenediamine) (TiO2@PANI‐o‐PDA) core–shell nanocomposites were chemically synthesized in a molar ratio of 5:1 of the particular monomers and several weights of nano‐TiO2 via oxidative copolymerization. The construction of the TiO2@PANI‐o‐PDA core–shell nanocomposites was ascertained from Fourier transform IR spectroscopy, UV–visible spectroscopy and XRD. A reasonable thermal behavior for the original copolymer and the TiO2@PANI‐o‐PDA core–shell nanocomposites was investigated. The bare PANI‐o‐PDA copolymer was thermally less stable than the TiO2@PANI‐o‐PDA nanocomposites. The core–shell feature of the nanocomposites was found to have core and shell sizes of 17 nm and 19–26 nm, respectively. In addition, it was found that the addition of a high ratio of TiO2 nanoparticles increases the electrical conductivity and consequently lowers the electrical resistivity of the TiO2@PANI‐o‐PDA core–shell nanocomposites. The hybrid photocatalysts exhibit a dramatic photocatalytic efficacy of methylene blue degradation under solar light irradiation. A plausible interpretation of the photocatalytic degradation results of methylene blue is also demonstrated. Our setup introduces a facile, inexpensive, unique and efficient technique for developing new core–shell nanomaterials with various required functionalities and colloidal stabilities. © 2018 Society of Chemical Industry  相似文献   

6.
High-refractive index polymeric materials, which are transparent, have many promising applications in optical design and advanced optoelectronic fabrication. In order to improve the refractive index of polymeric materials, inorganic materials with high-refractive index, such as TiO2, are always added into polymers. However, some of the traditional synthetic methods are complicated and hard to control. In our work, we developed a novel and simple method, a one-step in situ solvothermal method, to prepare poly(methyl methacrylate) (PMMA) and nano-TiO2 hybrid films. Methyl methacrylate (MMA), vinyltrimethoxysilane (VTMO), titanium butoxide [Ti(OBu)4], ethanol, hydrochloric acid, azobis-isobutyronitrile and tetrahydrofuran were added into a reaction vessel altogether and the polymerization of PMMA matrix and the formation of nano-TiO2 composite carried out simultaneously. To improve the adhesion between PMMA and TiO2, VTMO was used as a comonomer. The results indicate that TiO2 nanoparticles produced by decomposition of titanium butoxide are dispersed homogeneously in the PMMA matrix. The size of TiO2 crystals in PMMA/TiO2 nanocomposites is about 5–6 nm. The hybrid films have a good transparency (over 80 %) in the visible region, a good thermal stability and a UV-shielding property after the incorporation of TiO2. The refractive index of as-formed PMMA/TiO2 nanocomposites increases up to 1.839 at 633 nm as the content of Ti(OBu)4 is 50.00 wt%.  相似文献   

7.
Structural design is of great importance to the performance of photocatalysts in environmental remediation. Therefore, micro/nanofibrous morphology and nanoporous local structures have been found to be beneficial to improve the photocatalytic activity. In this investigation, we report the design and fabrication of flexible and thermal stable nanoporous SiO2–TiO2 composite fibers as efficient photocatalysts. Combining electrospinning and modified Stöber techniques, core‐shell and mesoporous SiO2 fibers with high flexibility were fabricated and employed as the scaffold for supporting TiO2 nanoparticles. A nanoporous shell of TiO2 nanoparticles was then muffled over the SiO2 fibers to form core@dual‐shell SiO2–TiO2 composite fibers with hierarchically porous structure, which were conveniently patterned into a nonwoven, recyclable film. This nonwoven film exhibits better photocatalytic activity for Rhodamine B degradation under UV irradiation compared with some other TiO2‐based materials reported in recent years.  相似文献   

8.
There is a contradiction in making completely opaque and white plastic film with a required high TiO2 filling fraction, which resulted in inefficient pigment utilization and high cost. Two methods were used here to overcome the contradiction. Firstly, TiO2 was grafted with poly(methyl methacrylate) (PMMA) by atom transfer radical polymerization to improve the pigment dispersion in poly(vinylidene) fluoride (PVDF). Secondly, minute amounts of carbon black (CB) were added into the PMMA‐g‐TiO2/PVDF system to enhance opacity and decrease TiO2 fraction. The structure, morphology, and properties of PMMA‐g‐TiO2 hybrid particles and composite films were investigated by FTIR, TEM, TGA, SEM, DMA, covering power meter, and UV/VIS spectrophotometer, etc. It was observed that PMMA‐g‐TiO2 was dispersed uniformly as individual particles in PVDF due to the good compatibility between PMMA and PVDF. Therefore, the opacity of PMMA‐g‐TiO2/PVDF films was markedly higher than unmodified‐TiO2/PVDF ones. Adding minute amounts of CB can significantly increase the opacity of the thin film due to its absorption effect on decreasing light transmittance. The contrast ratio (CR) of the PMMA‐g‐TiO2/PVDF film with 20 μm thickness and 25 vol % TiO2 was 97.67%, lower than the critical CR 98% for a complete opacity, however, the CR of sample with 10 vol % TiO2 was 98.1% as the CB concentration was 2 × 10?4 g/cm3, saved more than 15% TiO2. We proposed that a critical thickness d0 existed for the CB/PMMA‐g‐TiO2/PVDF composite films, under which the light reflectance increased as a function of thickness, otherwise, the reflectance kept constant. Besides, d0 could be decreased by increasing CB concentration. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43064.  相似文献   

9.
In this work we report the synthesis process and properties of PMMA‐ZrO2 organic–inorganic hybrid films. The hybrid films were deposited by a modified sol‐gel process using zirconium propoxide (ZP) as the inorganic (zirconia) source, methyl methacrylate (MMA) as the organic source, and 3‐trimetoxy‐silyl‐propyl‐methacrylate (TMSPM) as the coupling agent between organic and inorganic phases. The films were deposited by dip coating on glass slide substrates from a hybrid precursor solution containing the three precursors with molar ratio 1 : 0.25 : 0.25 for ZP, TMSPM, and MMA, respectively. After deposition, the hybrid thin films were heat‐treated at 100°C for 24 h. The macroscopic characteristics of the hybrid films such as high homogeneity and high optical transparence evidenced the formation of a cross‐linked, interpenetrated organic–inorganic network. The deposited PMMA‐ZrO2 hybrid films were homogeneous, highly transparent and very well adhered to substrates. Fourier Transform Infra‐Red measurements of the hybrid films display absorption bands of chemical groups associated with both PMMA and ZrO2 phases. The amounts of organic and inorganic phases in the hybrid films were determined from thermogravimetric measurements. The surface morphology and homogeneity of the hybrid films at microscopic level were analyzed by scanning electron microscopy and atomic force microscopy images. From the analysis of optical transmission and reflection spectra, the optical constants (refraction index and extinction coefficient) of the hybrid films were determined, employing a physical model to simulate the hybrid optical layers. The refraction index of the hybrid films at 532 nm was 1.56. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42738.  相似文献   

10.
Encapsulation of inorganic nanoparticles by polymers is one of the interesting research topics that lead to the synthesis of nanocomposites. These nanocomposite materials comprise the properties of both organic polymer and inorganic nanoparticles. Here, hybrid latex particles with core–shell nanostructure were prepared via semi-batch emulsion polymerization. Copolymers of (methyl methacrylate-butyl acrylate) and (dimethylaminoethyl methacrylate-butyl acrylate-acrylic acid) were formed as the inner and outer layers, respectively on the surface of modified TiO2 nanoparticles as the core. In order to create compatibility between inorganic and polymeric phases, modification of TiO2 nanoparticles was performed with glycidyl methacrylate with an optimized procedure for the first time and then emulsion polymerization was carried out. The products of each step were fully characterized. The results of dynamic light scattering, TEM and SEM analyses proved the formation of encapsulated hybrid latex particles. DLS and SEM data revealed that the sizes of nanocomposite particles vary between 85 and 120 nm for 0–5 wt% of the modified TiO2 nanoparticles. Physico-mechanical properties of the obtained nanocomposite films were studied by DMTA. It was found that using only 3 wt% of modified TiO2 improved those properties of resulting films remarkably.  相似文献   

11.
The purpose of this study was to improve the physical properties and to expand the application range of starch‐based blend films added nano‐sized TiO2/poly(methyl methacrylate‐co‐acrylamide) (PMMA‐co‐AM). Starch‐based blend films were prepared by using corn starch, polyvinyl alcohol (PVA), nano‐sized PMMA‐co‐AM, nano‐sized TiO2/PMMA‐co‐AM particles, and additives, i.e., glycerol (GL) and citric acid (CA). Nano‐sized PMMA‐co‐AM was synthesized by emulsion polymerization and TiO2 nanoparticles were also prepared by using sol–gel method. Nano‐sized TiO2/PMMA‐co‐AM particles were synthesized by wet milling for 48 h. The morphology and crystallinity of TiO2, nano‐sized PMMA‐co‐AM and TiO2/PMMA‐co‐AM particles were investigated by using the scanning electron microscope (SEM) and X‐ray diffractometer (XRD). In addition, the functional groups of the TiO2/PMMA‐co‐AM particles were characterized by IR spectrophotometry (FTIR). The physical properties such as tensile strength (TS), elongation at break (%E), degree of swelling (DS), and solubility (S) of starch‐based films were evaluated. It was found that the adding of nano‐sized particles can greatly improve the physical properties of the prepared films. The photocatalytic degradability of starch/PVA/nano‐sized TiO2/PMMA‐co‐AM composite films was evaluated using methylene blue (MB) and acetaldehyde (ATA) as photodegradation target under UV and visible light. The degree of decomposition (C/C0) of MB and ATA for the films containing TiO2 and CA was 0.506 and 0.088 under UV light irradiation and 0.586 (MB) and 0.631 (ATA) under visible light irradiation, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Electrospinning is one of the simple techniques for the production of polymer nano‐microfibers. In this study, hollow fibers from poly(methyl methacrylate) (PMMA) were formed by electrospinning under pressurized carbon dioxide (CO2) in a single processing step. The experiments were conducted at temperatures and pressures in the range 27–37°C and 4–6 MPa, respectively. At 5 MPa, CO2 seemed to have enough affinity to dissolve a portion of dichloromethane (DCM) to assist its evaporation. Under subcritical CO2, electrospun products with hollow core fibers having diameters of 4–16 μm were generated. The results confirmed that the change of operating parameters had a strong influence on the morphologies (crack or hollows) of the electrospun products. This study demonstrated that this process offers the possibility that electrospinning under pressurized CO2 will become an essential and useful method for the generation of polymer structures with hollow interiors. POLYM. ENG. SCI., 56:752–759, 2016. © 2016 Society of Plastics Engineers  相似文献   

13.
To improve the physical properties of plasticized poly(vinyl chloride) (p‐PVC), the p‐PVC nanocomposites filled with four loading levels (3, 5, 7, and 9 parts per hundred of PVC resin) of either nanosized titanium dioxide (nTiO2) or poly(methyl methacrylate)–encapsulated nTiO2 (PMMA‐nTiO2) were prepared by melt mixing on a two‐roll mill, followed by compression molding. The PMMA‐nTiO2 used in this study was synthesized via in situ differential microemulsion polymerization. The resulting PMMA‐nTiO2 exhibited core‐shell morphology (nTiO2 core and PMMA shell) with an average diameter of 42.6 nm. The effects of nTiO2 and PMMA‐nTiO2 on the tensile properties, hardness, morphology, and thermal stability of the as‐prepared p‐PVC nanocomposites were then investigated and compared. The inclusion of either nTiO2 or PMMA‐nTiO2 nanoparticles increased the tensile strength, Young's modulus, hardness, and thermal stability of the nanocomposites in a dose‐dependent manner and reduced the elongation at break. However, the elongation at break was still higher than that for the neat p‐PVC. Moreover, the PMMA‐nTiO2 nanocomposites had a higher enhancement of the tensile strength, Young's modulus, hardness, and thermal stability than the nTiO2 nanocomposites at a similar loading level. Hence, the PMMA grafted on the nTiO2 surface played an important role in toughening and increasing the thermal stability of the nanocomposites owing to the improved miscibility and interfacial adhesion between the encapsulated nanofiller and PVC matrix. J. VINYL ADDIT. TECHNOL., 22:433–440, 2016. © 2015 Society of Plastics Engineers  相似文献   

14.
Poly(methy methacrylate) (PMMA)‐SiO2 nanoparticles were prepared via differential microemulsion polymerization. The effects of silica loading, surfactant concentration, and initiator concentration on monomer conversion, particle size, particle size distribution, grafting efficiency, and silica encapsulation efficiency were investigated. A high monomer conversion of 99.9% and PMMA‐SiO2 nanoparticles with a size range of 30 to 50 nm were obtained at a low surfactant concentration of 5.34 wt% based on monomer. PMMA‐SiO2 nanoparticles showed spherical particles with a core‐shell morphology by TEM micrographs. A nanocomposite membrane from natural rubber (NR) and PMMA‐SiO2 emulsion was studied for mechanical and thermal properties and pervaporation of water‐ethanol mixtures. PMMA‐SiO2 nanoparticles which were uniformly dispersed in NR matrix, significantly enhanced mechanical properties and showed high water selectivity in permeate flux. Thus, the NR/PMMA‐SiO2 hybrid membranes have great potential for pervaporation process in membrane applications. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

15.
In this study, a series of organic–inorganic hybrid sol–gel materials consisting of a poly(methyl methacrylate) (PMMA) matrix and dispersed silica (SiO2) particles were successfully prepared through an organic‐acid‐catalyzed sol–gel route with N‐methyl‐2‐pyrrolidone as the mixing solvent. The as‐synthesized PMMA–SiO2 nanocomposites were subsequently characterized with Fourier transform infrared spectroscopy and transmission electron microscopy. The solid phase of organic camphor sulfonic acid was employed to catalyze the hydrolysis and condensation (i.e., sol–gel reactions) of tetraethyl orthosilicate in the PMMA matrix. The formation of the hybrid membranes was beneficial for the physical properties at low SiO2 loadings, especially for enhanced mechanical strength and gas barrier properties, in comparison with the neat PMMA. The effects of material composition on the thermal stability, thermal conductivity, mechanical strength, molecular permeability, optical clarity, and surface morphology of the as‐prepared hybrid PMMA–SiO2 nanocomposites in the form of membranes were investigated with thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, gas permeability analysis, ultraviolet–visible transmission spectroscopy, and atomic force microscopy, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
BACKGROUND: Semiconductor TiO2 has been investigated extensively due to its chemical stability, nontoxicity and inexpensiveness. However, the wide band gap of anatase TiO2 (about 3.2 eV) only allows it to absorb UV light. TiO2 nanoparticles modified by conditional conjugated polymers show excellent photocatalytic activity under visible light. However, these conjugated polymers are not only expensive, but also difficult to process. Polyvinyl chloride (PVC) was heat‐treated at high temperature to remove HCl and a C?C conjugated chain structure was obtained. When TiO2 nanoparticles were dispersed into the conjugated polymer film derived from PVC, this composites film exhibited high visible light photocatalytic activity. RESULTS: The photocatalytic activity of TiO2/heat‐treated PVC (HTPVC) film was investigated by degrading Rhodamine B (RhB) under visible light irradiation. The photodegradation of RhB follows apparent first‐order kinetics. The rate constants of RhB photodegradation in the presence of the TiO2/HTPVC films with different mass content of TiO2 are 16–56 and 4–14 times that obtained in the presence of the pure HTPVC and TiO2/polymethyl methacrylate (PMMA) composite film, respectively. The TiO2/HTPVC film showed excellent photocatalytic activity and stability after 10 cycles under visible light irradiation. CONCLUSION: TiO2/HTPVC film exhibits high visible light photocatalytic activity and stability. Copyright © 2012 Society of Chemical Industry  相似文献   

17.
On the basis of sol–gel methodology, a novel degradable hybrid electrolyte, poly(lactic acid) (PLA)/poly(methyl methacrylate) (PMMA)/silicon dioxide (SiO2) hybrid electrolyte, was prepared from PLA, methyl methacrylate, and tetraethoxylsilicon with 3‐methacryloxypropyl trimethoxysilane as a coupling agent. As observed from Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy spectra, the PLA, PMMA, and silica units were linked by covalent bonds through the coupling agent in a hybrid network. Differential scanning calorimetry results show that the heat‐resistance properties of the hybrid electrolyte improved with increasing SiO2 content. The hybrid electrolyte was shown to be amorphous by the X‐ray diffraction results. From study of ionic conductivity by alternating‐current impedance, the ionic conductivity of the PLA/PMMA/SiO2 hybrid electrolyte increased with increasing silica content, reached a maximum value of 2.42 × 10?4 S/cm at 2 wt % SiO2, and then decreased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
19.
A macroazoinitiator (MAI) containing a poly(ethylene oxide) (PEO) block was used with a methyl methacrylate monomer to prepare polymer particles in ethanol/H2O solutions. The effects of the monomer/MAI ratio (RMI) and H2O content in the solutions on the molecular weight, particle diameters, and chemical structure of the resulting polymer particles were investigated. The reaction mixtures showed three kinds of states, which were milky colloid solutions, macrogels and/or precipitations, and clear solutions. The colloid solutions were obtained in the solutions with an H2O content of about 50–90 vol % and a RMI of 20–400. In the colloid solutions, core–shell nanospheres consisting of PEO shells and poly(methyl methacrylate) (PMMA) cores were predominantly obtained. In the specific conditions close to the area of gel and/or precipitation formation, particles connected about 0.5–5 μm in length were obtained. Multiblock copolymers nanospheres tended to be obtained with lower RMIs, and PMMA‐PEO‐PMMA tri‐bloc and/or PMMA‐PEO di‐block copolymer nanospheres were obtained with higher RMIs. The solubility of the monomer and the generated polymer in solutions may have affected the polymerization development and the state of the products. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
A series of sol–gel‐derived organic–inorganic hybrid materials that comprise organic poly(methyl methacrylate) (PMMA) and inorganic silica (SiO2) was successfully prepared using aniline as an organic base catalyst to catalyze the sol–gel reactions of tetraethylorthosilicate (TEOS). Aniline was adopted not only as a catalyst but also as a dispersing agent during the preparation of the hybrid materials. The as‐prepared hybrid materials were then characterized using transmission electron microscopy, SEM/energy dispersive X‐ray spectroscopy and Fourier transform infrared spectroscopy. The characteristic temperatures (including Td and Tg) of the hybrid materials slightly exceeded those of neat PMMA, as revealed from thermogravimetric analysis and differential scanning calorimetry evaluations. Studies of the protection against corrosion demonstrated that the hybrid coatings all improved the protection performance on cold‐rolled steel coupons relative to that of neat PMMA coatings, according to measurements of electrochemical corrosion parameters. Additionally, incorporating silica particles into the polymer may effectively reduce the gas permeability of the polymer membrane. Reducing the size of silica particles (at the same silica feeding) further improved the gas barrier property. Optical clarity studies indicated that introducing silica particles into the PMMA matrix may slightly reduce the optical clarity of the films/membranes, as determined by UV‐visible transmission spectroscopy. The contact angle of H2O of the hybrid films increased with the amount of aniline. Copyright © 2006 Society of Chemical Industry Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号