首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a novel transmission technique for the multiple-input multiple-output (MIMO) broadcast channel is proposed that allows simultaneous transmission to multiple users with limited feedback from each user. During a training phase, the base station modulates a training sequence on multiple sets of randomly chosen orthogonal beamforming vectors. Each user sends the index of the best beamforming vector and the corresponding signal-to-interference-plus-noise ratio for that set of orthogonal vectors back to the base station. The base station opportunistically determines the users and corresponding orthogonal vectors that maximize the sum capacity. Based on the capacity expressions, the optimal amount of training to maximize the sum capacity is derived as a function of the system parameters. The main advantage of the proposed system is that it provides throughput gains for the MIMO broadcast channel with a small feedback overhead, and provides these gains even with a small number of active users. Numerical simulations show that a 20% gain in sum capacity is achieved (for a small number of users) over conventional opportunistic space division multiple access, and a 100% gain (for a large number of users) over conventional opportunistic beamforming when the number of transmit antennas is four.  相似文献   

2.
The capacity-achieving coding scheme for the multiple-input multiple-output (MIMO) broadcast channel is dirty-paper coding. With this type of transmission scheme the optimal number of active users that receive data and the optimal power allocation strategy are highly dependent on the structure of the channel matrix and on the total transmit power available. In the context of packet-data access with adaptive transmission where mobile users are equipped with a single receive antenna and the base station has multiple transmit antennas, we study the optimal number of active users and the optimal power allocation. In the particular case of two transmit antennas, we prove that the optimal number of active users can be a non-monotonic function of the total transmit power. Thus not only the number of users that should optimally be served simultaneously depends on the user channel vectors but also on the power available at the base station transmitter. The expected complexity of optimal scheduling algorithms is thus very high. Yet we then prove that at most as many users as the number of transmit antennas are allocated a large amount of power asymptotically in the high-power region in order to achieve the sum-capacity. Simulations confirm that constraining the number of active users to be no more than the number of transmit antennas incurs only a marginal loss in spectral efficiency. Based on these observations, we propose low-complexity scheduling algorithms with sub-optimal transmission schemes that can approach the sum-capacity of the MIMO broadcast channel by taking advantage of multiuser diversity. The suitability of known antenna selection algorithms is also demonstrated. We consider the cases of complete and partial channel knowledge at the transmitter. We provide simulation results to illustrate our conclusions.  相似文献   

3.
This paper considers the multiuser multiple-input multiple-output (MIMO) Rayleigh fading broadcast channel. We consider the case where the multiple transmit antennas are used to deliver independent data streams to multiple users via a multiuser technique known as vector perturbation. We propose lattice-theoretic and rate-distortion based approaches to analyze the performance of these systems, taking into account the practical restrictions imposed by limited feedback and training. We show that performance is primarily determined by the ratio between the number of users and the number of transmit antennas. We then propose a new practical low-complexity low-rate feedback scheme, and show that the performance approaches the ideal rate-distortion based scheme.  相似文献   

4.
We investigate a wireless network architecture that utilizes Tomlinson Harashima Precoded Multiple Input Multiple Output (THP MIMO) technique for improved system capacity. We consider THP MIMO in a multi user scenario, together with a proposed smart scheduling technique and we explore the capacity performance through extensive capacity analysis considering varying SNR levels, varying number of users and number of transmit/receive antennas, under fading and shadowing, also considering errors in channel state information (CSI). We also evaluate the complexity of THP MIMO and present a low-complexity scheduling algorithm that employs Gram-Schmidt algorithm for incremental implementation of THP’s QR factorization. In the end, we identify the network and channel conditions under which THP MIMO can be preferred over classical conventional MIMO, and we conclude that for practical transceivers with up to four antennas, THP MIMO can provide significant capacity enhancement over conventional MIMO at lower complexity, performing slightly below the sum rate capacity bound. Another important advantage that is observed in this study is better immunity of THP MIMO to CSI errors, as compared to conventional MIMO.  相似文献   

5.
王倩  华权  周应超  申滨 《电信科学》2016,32(8):61-68
大规模MIMO系统中,当小区用户数与基站天线数较大时,各用户的信道条件不尽相同,提出一种适用于大规模MIMO下行链路的基于联合用户分组及天线选择的迫零波束成形算法。将用户分成两组,选择信道条件较优的一组用户来接收信号,并为每一个发送数据流选择最优的基站天线组合进行通信,以较小的性能损失,换取大规模MIMO 射频电路的成本与功耗的大幅度降低。仿真结果证明,该算法能够较好地实现系统性能与硬件复杂度的折中。  相似文献   

6.
The motivation of this paper is to find the class of channels that provides the best sum capacity of a MIMO Gaussian broadcast channel with both transmit power and channel energy constraints when N/sub t//spl ges/KN/sub r/, where N/sub t/, N/sub r/, and K denote the number of transmit antennas, the number of receive antennas, and the number of users in the system, respectively. The best sum capacity is achieved when the user channels are mutually orthogonal to each other. For each individual user, equal energy is distributed to all non-zero spatial eigenmodes. Further, we optimize the number of non-zero eigenmodes for all users and the optimal power distribution among users. Although, we only study the case of N/sub t//spl ges/KN/sub r/ in this paper, we conjecture that similar results still hold for N/sub t/相似文献   

7.
A robust scheme is proposed to jointly optimize transmit/receive beamformers for Multiple Input Multiple Output (MIMO) downlinks where the available Channel State Information (CSI) at Base Station (BS) (CSIBS) is imperfect. The criterion is to minimize the sum Mean Square Error (sum-MSE) over all users under a constraint on the total transmit power, which is a non-convex and non-linear problem. Observing from the first order optimization condition that the optimal transmit/receive beamformers are mutually dependent, the transmit/receive beamformers for each user are updated iteratively until the sum-MSE is minimized. Simulation results indicate that the proposed scheme can effectively mitigate the system performance loss induced by imperfect CSIBS.  相似文献   

8.
Fundamental Limits in MIMO Broadcast Channels   总被引:2,自引:0,他引:2  
This paper studies the fundamental limits of MIMO broadcast channels from a high level, determining the sum-rate capacity of the system as a function of system parameters, such as the number of transmit antennas, the number of users, the number of receive antennas, and the total transmit power. The crucial role of channel state information at the transmitter is emphasized, as well as the emergence of opportunistic transmission schemes. The effects of channel estimation errors, training, and spatial correlation are studied, as well as issues related to fairness, delay and differentiated rate scheduling.  相似文献   

9.
The use of space-division multiple access (SDMA) in the downlink of a multiuser multiple-input, multiple-output (MIMO) wireless communications network can provide a substantial gain in system throughput. The challenge in such multiuser systems is designing transmit vectors while considering the co-channel interference of other users. Typical optimization problems of interest include the capacity problem - maximizing the sum information rate subject to a power constraint-or the power control problem-minimizing transmitted power such that a certain quality-of-service metric for each user is met. Neither of these problems possess closed-form solutions for the general multiuser MIMO channel, but the imposition of certain constraints can lead to closed-form solutions. This paper presents two such constrained solutions. The first, referred to as "block-diagonalization," is a generalization of channel inversion when there are multiple antennas at each receiver. It is easily adapted to optimize for either maximum transmission rate or minimum power and approaches the optimal solution at high SNR. The second, known as "successive optimization," is an alternative method for solving the power minimization problem one user at a time, and it yields superior results in some (e.g., low SNR) situations. Both of these algorithms are limited to cases where the transmitter has more antennas than all receive antennas combined. In order to accommodate more general scenarios, we also propose a framework for coordinated transmitter-receiver processing that generalizes the two algorithms to cases involving more receive than transmit antennas. While the proposed algorithms are suboptimal, they lead to simpler transmitter and receiver structures and allow for a reasonable tradeoff between performance and complexity.  相似文献   

10.
We study the ergodic sum-rate capacity of the fading MIMO broadcast channel which is used to model the downlink of a cellular system with N/sub t/ transmit antennas at the,base and K mobile users each having N/sub r/ receive antennas. Assuming perfect channel state information (CSI) for all users is available at the transmitter and the receivers, we evaluate the sum-rate capacity numerically using the duality between uplink and downlink. Assuming Nt K, we also derive both upper and lower bounds on the sum-rate capacity to study its increase rate due to multi-user diversity. Finally, we compare three transmission schemes which use the single-user-MIMO scheme (SU-MIMO), ranked known interference (RKI) and zero-forcing beamforming (ZFB), respectively, to transmit to a selected set of users in order to approach the sum-rate capacity. We show that both ZFB and RKI outperform SU-MIMO in a cellular downlink scenario. when many mobile users are present.  相似文献   

11.
By deducing the distribution of the normalized channel covariance matrix, a novel limited feedback scheme is proposed under multiple users (MU) multiple-input multiple-output (MIMO) broadcast channel (BC) system. The proposed scheme has advantages in three aspects. First, it has no constraints on the number of users or antennas. Second, each user's feedback bits are independent of the number of receiving antennas. Third, the proposed scheme avoids the storage of large-size codebook on the transceivers. Simulation results show that the performance of the proposed scheme is close to the perfect channel state information (CSI) case and it just needs a small number of feedback bits.  相似文献   

12.
Block diagonalization (BD) and successive optimization (SO) are two suboptimal but more practical (compared to dirty paper coding (DPC)) orthogonal linear precoding techniques for the downlink of multiuser MIMO systems. Since the numbers of users supported by BD or SO for a given number of transmit antennas are limited, BD or SO should be combined with scheduling so that a subset of users is selected at a given time slot while meeting the dimensionality requirements of these techniques. On the other hand, receive antenna selection (RAS) is a promising hardware complexity reduction technique. In this paper, we consider user scheduling in conjunction with receive antenna selection. Since exhaustive search is computationally prohibitive, we propose simplified and suboptimal user scheduling algorithms for both BD and SO. For BD, we propose capacity and Frobenius-norm based suboptimal algorithms with the objective of sum rate maximization. Starting from an empty set, each step of proposed algorithms adds the best user from the set of users not selected yet until the desired number of users have been selected. Proposed receive antenna selection works in conjunction with user scheduling to further enhance the sum rate of BD. For SO, a Frobenius-norm based low complexity algorithm is proposed, which maximizes the ratio of the squared Frobenius norm of the equivalent channel (projected to the joint null space of the previously selected users) to the sum of the squared Frobenius norms of the previously selected users’ preprocessed channels. Simulation results demonstrate that the proposed algorithms achieve sum rates close to exhaustive search algorithms with much reduced complexity. We also show that in addition to reduced hardware complexity at the receiver, antenna selection enhances multiuser diversity gain that is achieved with user scheduling.  相似文献   

13.
Opportunistic Feedback for Multiuser MIMO Systems With Linear Receivers   总被引:1,自引:0,他引:1  
A novel multiuser scheduling and feedback strategy for the multiple-input multiple-output (MIMO) downlink is proposed in this paper. It achieves multiuser diversity gain without substantial feedback requirements. The proposed strategy uses per-antenna scheduling at the base station, which maps each transmit antenna at the base station (equivalently, a spatial channel) to a user. Each user has a number of receive antennas that is greater than or equal to the number of transmit antennas at the base station. Zero-forcing receivers are deployed by each user to decode the transmitted data streams. In this system, the base station requires users' channel quality on each spatial channel for scheduling. An opportunistic feedback protocol is proposed to reduce the feedback requirements. The proposed protocol uses a contention channel that consists of a fixed number of feedback minislots to convey channel state information. Feedback control parameters including the channel quality threshold and the random access feedback probability are jointly adjusted to maximize the average throughput performance of this system. Multiple receive antennas at the base station are used on the feedback channel to allow decoding multiple feedback messages sent simultaneously by different users. This further reduces the bandwidth of the feedback channel. Iterative search algorithms are proposed to solve the optimization for selection of these parameters under both scenarios that the cumulative distribution functions of users are known or unknown to the base station  相似文献   

14.
MIMO Broadcast Scheduling with Limited Feedback   总被引:5,自引:0,他引:5  
We consider multiuser scheduling with limited feedback of partial channel state information in MIMO broadcast channels. By using spatial multiplexing at the base station (BS) and antenna selection for each user, we propose a multiuser scheduling method that allocates independent information streams from all M transmit antennas to the M most favorable users with the highest signal-to-interference-plus-noise ratio (SINR). A close approximation of the achievable sum-rate throughput for the proposed method is obtained and shown to match the simulation results very well. Moreover, two reduced feedback scheduling approaches are proposed. In the first approach, which we shall refer to as selected feedback scheduling, the users are selected based on their SINR compared to a predesigned threshold. Only those selected users are allowed to feed back limited information to the BS. The resultant feedback load and achievable throughput are derived. It will then be demonstrated that with a proper choice of the threshold, the feedback load can be greatly reduced with a negligible performance loss. The second reduced feedback scheduling approach employs quantization for each user, in which only few bits of quantized SINR are fed back to the BS. Performance analysis will show that even with only 1-bit quantization, the proposed quantized feedback scheduling approach can exploit the multiuser diversity at the expense of slight decrease of throughput.  相似文献   

15.
We consider both the single-user and the multi-user power allocation problems in MIMO systems, where the receiver side has the perfect channel state information (CSI), and the transmitter side has partial CSI, which is in the form of covariance feedback. In a single-user MIMO system, we consider an iterative algorithm that solves for the eigenvalues of the optimum transmit covariance matrix that maximizes the rate. The algorithm is based on enforcing the Karush-Kuhn-Tucker (KKT) optimality conditions of the optimization problem at each iteration. We prove that this algorithm converges to the unique global optimum power allocation when initiated at an arbitrary point. We, then, consider the multi-user generalization of the problem, which is to find the eigenvalues of the optimum transmit covariance matrices of all users that maximize the sum rate of the MIMO multiple access channel (MIMO-MAC). For this problem, we propose an algorithm that finds the unique optimum power allocation policies of all users. At a given iteration, the multi-user algorithm updates the power allocation of one user, given the power allocations of the rest of the users, and iterates over all users in a round-robin fashion. Finally, we make several suggestions that significantly improve the convergence rate of the proposed algorithms.  相似文献   

16.
In this letter, a multiuser space-time trellis coding (MU-STTC) scheme is proposed for MIMO vector Gaussian broadcast channels (VGBC). For the system with two transmit antennas and two users with one receive antenna each, the proposed scheme decomposes the system into two subsystems, each of which is equivalent to a system with two transmit and one receive antenna with known interference. A novel precoding scheme is developed to eliminate such interference. The proposed scheme enables to incorporate space time trellis coding and adaptive weighting into the system to provide a significant coding and weighting gain. Simulation results confirm its good performance.  相似文献   

17.
在多输入多输出(MIMO)系统中,天线选择技术平衡了系统的性能和硬件开销,但大规模MI-MO系统收发端天线选择复杂度问题一直没有得到很好的解决.基于信道容量最大化的准则,采用两个二进制编码字符串分别表示发射端和接收端天线被选择的状态,提出将二进制猫群算法(BCSO)应用于多天线选择中,以MIMO系统信道容量公式作为猫群的适应度函数,将收发端天线选择问题转化为猫群的位置寻优过程.建立了基于BCSO的天线选择模型,给出了算法的实现步骤.仿真结果表明所提算法较之于基于矩阵简化的方法、粒子优化算法具有更好的收敛性和较低的计算复杂度,选择后的系统信道容量接近于最优算法,非常适用于联合收发端天线选择的大规模MIMO系统中.  相似文献   

18.
The theory of multiple-input–multiple-output (MIMO) technology has been well developed to increase fading channel capacity over single-input–single-output (SISO) systems. This capacity gain can often be leveraged by utilizing channel state information at the transmitter and the receiver. Users make use of this channel state information for transmit signal adaptation. In this correspondence, we derive the capacity region for the MIMO multiple access channel (MIMO MAC) when partial channel state information is available at the transmitters, where we assume a synchronous MIMO multiuser uplink. The partial channel state information feedback has a cardinality constraint and is fed back from the basestation to the users using a limited rate feedback channel. Using this feedback information, we propose a finite codebook design method to maximize the sum rate. In this correspondence, the codebook is a set of transmit signal covariance matrices. We also derive the capacity region and codebook design methods in the case that the covariance matrix is rank one (i.e., beamforming). This is motivated by the fact that beamforming is optimal in certain conditions. The simulation results show that when the number of feedback bits increases, the capacity also increases. Even with a small number of feedback bits, the performance of the proposed system is close to an optimal solution with the full feedback.   相似文献   

19.
In this paper, we propose a differential space-frequency block code-orthogonal frequency division multiplexing (DSFBC-OFDM) scheme as a multiple-input multiple-output (MIMO) transmission technique for next generation broadcasting system. A linear decoding method for DSFBC, which performs comparably to the ML decoding method, is derived for the cases of two or four transmit antennas. A simple table lookup method is proposed to improve the efficiency of the encoding/decoding process of DSFBC for the case of non-constant modulus constellations. This not only reduces the computational load, but also removes the necessity of channel estimation. Also, synchronization techniques with a DSFBC-encoded phase reference symbol (PRS) are discussed. Finally, an MIMO channel model for the next generation broadcasting system is developed by extending the 3GPP MIMO model to fit broadcasting environments. The MIMO channel model is then used to compare BER performances of differential space block code schemes for various channel environments. Simulation results show that the DSFBC-16QAM scheme using either four transmit antennas with one receive antenna or two transmit antennas with two receive antennas achieves a performance gain of 12 dB, with a data rate twice faster than that of the conventional DQPSK scheme  相似文献   

20.
We consider a MIMO broadcast channel where both the transmitter and receivers are equipped with multiple antennas. Channel state information at the transmitter (CSIT) is obtained through limited (i.e., finite-bandwidth) feedback from the receivers that index a set of precoding vectors contained in a predefined codebook. We propose a novel transceiver architecture based on zero-forcing beamforming and linear receiver combining. The receiver combining and quantization for CSIT feedback are jointly designed in order to maximize the expected SINR for each user. We provide an analytic characterization of the achievable throughput in the case of many users and show how additional receive antennas or higher multiuser diversity can reduce the required feedback rate to achieve a target throughput.We also propose a design methodology for generating codebooks tailored for arbitrary spatial correlation statistics. The resulting codebooks have a tree structure that can be utilized in time-correlated MIMO channels to significantly reduce feedback overhead. Simulation results show the effectiveness of the overall transceiver design strategy and codebook design methodology compared to prior techniques in a variety of correlation environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号