首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Cereulide producing Bacillus cereus was isolated from randomly chosen commercial infant foods. The cereulide production in infant food formulas was investigated. When the reconstituted foods were inoculated with >10(5) cfu ml(-1) of cereulide producing B. cereus, 2 to 200 microg of cereulide per 100 ml of food accumulated during 24 h of non-refrigerated storage. The amount of cereulide measured in the foods by the accurate chemical assay (LC-MS) matched with that found by sperm micro assay, proving the cereulide was the sole heat stable toxin in the foods and present in its toxic form. The infant formulas containing both cereal and dairy ingredients were the most supportive for cereulide production. Cereulide accumulation was affected by the infant food composition as well as by the handling of the food. Diluting the reconstituted food with water resulted in increased toxin production expressed as mug per volume. More cereulide was accumulated when the food was incubated stationary compared with moderate shaking. The amount of cereulide accumulated within 24 h at room temperature per 100 ml of cereal and dairy or in rice-nondairy reconstituted infant formulas, inoculated with >or=10(5) cfu ml(-1) of B. cereus strain F4810/72, was higher or similar to the amounts reported for foods implicated in emetic type of food poisonings. Thus mishandling and temperature abuse of infant foods may cause food poisoning when emetic B. cereus is present.  相似文献   

2.
Factors influencing the production of cereulide, the emetic toxin of Bacillus cereus in food and laboratory media were investigated, using liquid chromatography-ion trap mass spectrometry and sperm motility inhibition bioassay for detection and quantitation. Oxygen was essential for production of the emetic toxin by B. cereus. When beans, rice or tryptic soy broth were inoculated with cereulide producing strains B203, B116 (recent food isolates) or the strain F-4810/72, high amounts (2 to 7 microg ml(-1) or g(-1) wet wt) of cereulide accumulated during 4-day storage at room temperature. In parallel cultures and foods, stored under nitrogen atmosphere (> 99.5% N2), less than 0.05 microg of cereulide ml(-1) or g(-1) wet wt accumulated. The outcome of the bioassay matched that of the chemical assay, with no indication of interference by substances in the rice or beans. Boiling for 20 to 30 min did not inactivate cereulide or cereulide producing strains in rice or the beans. Adding l-leucine and l-valine (0.3 g l(-1)) stimulated cereulide production 10- to 20-fold in R2A and in rice water agar. When the B. cereus strains were grown on agar media under permissive conditions (air, room temperature), cereulide was produced overnight with little or no increase when the incubation was extended to 4 days. In broth culture, the production of cereulide started later than 16-24 h. Anoxic storage prevented cereulide production also when the amino acids had been supplied. Packaging with modified atmosphere low in oxygen may thus be used to reduce the risk of cereulide formation during storage of food.  相似文献   

3.
A method for the direct quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, in bakery products was developed. The analysis was based on robotized extraction followed by quantitation of cereulide by liquid chromatography-mass spectrometry and an assay of toxicity by the boar sperm motility inhibition test. The bioassay and the chemical assay gave comparable results, demonstrating that the extracted cereulide was in a biologically active form. Cereulide was formed when cereulide-producing B. cereus strains were present at > or = 10(6) CFU/g in products with water activity values of > 0.953 and pHs of > 5.6. Rice-containing pastries accumulated high contents of cereulide (0.3 to 5.5 microg/g [wet weight]) when stored at nonrefrigeration temperatures (21 to 23 degrees C). Cereulide was not formed in products stored at refrigeration temperatures (4 to 8 degrees C). Cereulide is not inactivated by heating during food processing. Therefore, direct analysis of this toxin in food is preferable to cultivating methods for assessing the risk of food poisoning by emetic B. cereus.  相似文献   

4.
Potato puree and penne pasta were inoculated with cereulide producing B. cereus 5964a and B. cereus NS117. Static incubation at 28 degrees C proved these two foods to be a better substrate for higher cereulide production (4,080 ng/g in puree and 3,200 ng/g in penne were produced by B. cereus 5964a during 48 h of incubation) compared with boiled rice (2,000 ng/g). This difference occurred despite B. cereus counts of more than 10(8) CFU/g in all three products. Aeration of cultures had a negative effect on cereulide production, causing concentrations more than 10-fold lower than in some statically incubated samples. Cereulide production remained undetectable in shaken milk, whereas it reached 1,140 ng/ml in statically incubated milk. At 12 and 22 degrees C, presence of background flora was also a determinative factor. A total B. cereus count of more than 106 CFU/ml did not necessarily lead to uniform cereulide production and was also dependent on the B. cereus strain involved. In this study, we confirm that a number of factors play a crucial role in the determination of the extent to which, if at all, cereulide will be produced. Among those, type of the food, temperature, pH, and whether additional aeration (via incubation on an orbital shaker) is induced had an important role. An important effect was also induced by the cereulide-producing strain involved.  相似文献   

5.
Production of Bacillus cereus emetic toxin (cereulide) in various foods   总被引:2,自引:0,他引:2  
To determine the role of Bacillus cereus as a potential pathogen in food poisoning, the production of an emetic toxin (cereulide) by B. cereus was quantified in various food sources. The amount of emetic toxin in 13 of 14 food samples implicated in vomiting-type food poisoning cases ranged from 0.01 to 1.28 microg/g. A vomiting-type strain, B. cereus NC7401, was inoculated into various foods and incubated for 24 h at 20, 30, and 35 degrees C. In boiled rice, B. cereus rapidly increased to 10(7)-10(8) cfu/g and produced emetic toxin at both 30 and 35 degrees C. In farinaceous foods, the production of emetic toxin was as high as that in the food samples implicated in food poisoning. Low levels of emetic toxin were detectable in egg and meat and their products and a small quantity of toxin was detectable in liquid foods such as milk and soymilk when not aerated. Bacterial growth and toxin production was inhibited in foods cooked with vinegar, mayonnaise, and catsup, supposedly by the decreased pH of acetic acid. This is the first report that has quantified emetic toxin of B. cereus in various foods.  相似文献   

6.
The impacts of growth media and temperature on production of cereulide, the emetic toxin of Bacillus cereus, were measured for seven well characterised strains selected for diversity of biochemical and genetic properties and sources of origin. All strains carried cereulide synthase gene, ces, on a megaplasmid of ca. 200 kb and all grew up to 48-50 degrees C, but produced cereulide only up to 39 degrees C. On tryptic soy agar five strains, originating from foods, food poisonings and environment, produced highest amounts of cereulide at 23 to 28 degrees C, whereas two strains, from human faeces, produced cereulide similarly from 23 to 39 degrees C, with no clear temperature trend. These two strains differed from the others also by producing more cereulide on tryptic soy agar if supplemented with 5 vol.% of blood, whereas the other five strains produced similarly, independent on the presence of blood. On oatmeal agar only one strain produced major amounts of cereulide. On skim milk agar, raw milk agar, and MacConkey agar most strains grew well but produced only low amounts of cereulide. Three media components, the ratio [K(+)]:[Na(+)], contents of glycine and [Na(+)], appeared of significance for predicting cereulide production. Increase of [K(+)]:[Na(+)] (focal variable) predicted (P<0.001) high cereulide provided that the contents of glycine and [Na(+)] (additional variables) were kept constant. The results show that growth medium and temperature up and downregulate cereulide production by emetic B. cereus in a complex manner. The relevance of the findings to production of cereulide in the gut and to the safety of amino acids as additives in foods containing live toxinogenic organisms is discussed.  相似文献   

7.
The Bacillus cereus emetic toxin cereulide causes foodborne intoxication, which may occasionally result in severe disease, and even death. To differentially diagnose the emetic-type of foodborne disease caused by B. cereus and assess the safety of commercial food, we developed a rapid method to quantitate cereulide. This method was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for the extraction of cereulide from food using a normal-phase silica gel cartridge. The limits of detection and quantification were 0.1 and 0.5 ng of cereulide ml−1, respectively. Spiked cereulide was reproducibly recovered with over 67% efficiency from nine diverse foods implicated in cereulide food poisoning. The recovery rate, reproducibility, and intermediate precision for this single laboratory validation using boiled rice were 87.1%, 4.4%, and 7.0%, respectively. Further, we detected a wide range of cereulide concentrations in leftover food and vomitus samples from two emetic foodborne outbreaks. LC-MS/MS analysis correlated closely with those acquired using the HEp-2 cell assay, and quantitated cereulide from 10 food samples at least five times faster than the bioassay. This new method will provide clinicians with an improved tool for more rapidly and quantitatively determining the presence of cereulide in food and diagnosing food poisoning caused by cereulide.  相似文献   

8.
Possible use of three different essential oil components as natural food preservatives was studied by examining their influence in the kinetics of growth from activated spores of four Bacillus cereus strains in tyndallized carrot broth over the temperature range 5-16 degrees C. Selected low concentrations of carvacrol, cinnamaldehyde, or thymol showed a clear antibacterial activity against B. cereus in the vegetable substrate. The addition of 2 microl cinnamaldehyde or 20 mg thymol to 100 ml of broth in combination with refrigeration temperatures (相似文献   

9.
蜡样芽孢杆菌致吐毒素是热处理也不能灭活的毒素,没有方法可以去除食品中致吐毒素Cereulide。因此,探讨食品中哪些因素影响致吐毒素产生显得至关重要。本文对蜡样芽孢杆菌孢子、致吐毒素产生株的特点及致吐食源性中毒,分离、检测和定量食品中Cereulide的国内外新方法及影响致吐毒素产生的因素等进行了综述。  相似文献   

10.
Presence of Bacillus cereus in street foods in Gaborone, Botswana   总被引:1,自引:0,他引:1  
The purpose of this study was to evaluate the microbiological safety and quality of street foods sold in Gaborone, Botswana. A total of 148 point-of-sale composite street food samples were bought and analyzed between June 2001 and May 2002. The analysis focused on the level of contamination of various street foods with Bacillus cereus. The B. cereus (vegetative and spores), total spore, and total viable counts were determined on all the samples. Also B. cereus isolates from 444 individual point-of-sale food samples were characterized with respect to their biochemical profiles and enterotoxigenic properties. The B. cereus contamination rate for point-of-sale foods was 65%. The B. cereus counts ranged from not detectable to levels as high as 9.1 log CFU/g. Despite the high rate of contamination of some samples, generally, most samples had B. cereus counts of less than 4 log CFU/g; hence, they were of acceptable microbiological quality. Bacillus diarrheal enterotoxin was detected from 52 isolates from individual portions of meals using the B. cereus enterotoxin reversed passive latex agglutination kit. Results of the assay revealed that 59.6% of the B. cereus isolates were enterotoxigenic. Most of the enterotoxigenic isolates were obtained from vegetable samples.  相似文献   

11.
Two outbreak-related Bacillus cereus emetic strains were investigated for their growth and cereulide production potential in penne pasta at 4, 8 and 25 °C during 7-day storage. Cereulide production was detected and quantified by LC-MS method (LOD of 1 ng/ml, LOQ of 5 ng/ml) and growth was determined by culture-based enumeration. Inoculated B. cereus strains (10(5) CFU/g) were able to reach counts of more than 10(8) CFU/g and cereulide production of about 500 ng/g already after 3 days of storage at 25 °C. Interestingly, a constant increase of the toxin was noticed during incubation at ambient temperature storage: the cereulide was continuously produced during the bacterial stationary growth phase reaching maximal amounts at the end of the experiment (7 days, concentration of about 1000 ng/g). Strictly respected cold chain temperature as 4 °C did not allow any detectable cereulide production for any of the two tested strains. At the limited temperature abuse of 8 °C, a detectable amount of cereulide was observed after two days for one of the strain (TIAC303) (相似文献   

12.
A PCR assay for the detection of Bacillus cereus strains able to produce an emetic toxin (cereulide) was developed in this study based on a sequence-characterized amplified region (SCAR) derived from a random amplified polymorphic DNA (RAPD) fragment. One of the RAPD fragments generated was selected, cloned, and sequenced. A set of PCR primers was newly designed from the SCAR obtained (the sequence of the cloned RAPD fragment) and used in this assay. To determine the specificity of the assay, 30 different B. cereus strains, 8 other Bacillus strains (of six species), and 16 other non-Bacillus strains (from 16 genera) were tested. Results were positive for every emetic B. cereus strain and for only one nonemetic B. cereus strain. For all other bacterial strains, results were negative. Bacterial DNA for PCR was prepared by a simple procedure using Chelex 100 resin from the bacterial colony on the agar plate or from culture after growth in brain heart infusion medium. This PCR assay enabled us to detect the bacteria of emetic B. cereus grown on agar plates but not the bacteria of nonemetic B. cereus. To test this PCR assay for the monitoring of the emetic bacteria, 10 to 70 CFU of B. cereus DSM 4312 (emetic) per g of food was inoculated into several foods as an indicator, followed by a 7-h enrichment culture step. Because this PCR assay based on the SCAR derived from the RAPD fragment was able to detect bacterial cells, this assay should be useful for rapid and specific detection of emetic B. cereus.  相似文献   

13.
One hundred representative strains of Bacillus cereus were selected from a total collection of 372 B. cereus strains using two typing methods (RAPD and FT-IR) to investigate if emetic toxin-producing hazardous B. cereus strains possess characteristic growth and heat resistance profiles. The strains were classified into three groups: emetic toxin (cereulide)-producing strains (n=17), strains connected to diarrheal foodborne outbreaks (n=40) and food-environment strains (n=43), these latter not producing the emetic toxin. Our study revealed a shift in growth limits towards higher temperatures for the emetic strains, regardless of their origin. None of the emetic toxin-producing strains were able to grow below 10 degrees Celsius. In contrast, 11% (9 food-environment strains) out of the 83 non-emetic toxin-producing strains were able to grow at 4 degrees Celsius and 49% at 7 degrees Celsius (28 diarrheal and 13 food-environment strains). non-emetic toxin-producing strains. All emetic toxin-producing strains were able to grow at 48 degrees Celsius, but only 39% (16 diarrheal and 16 food-environment strains) of the non-emetic toxin-producing strains grew at this temperature. Spores from the emetic toxin-producing strains showed, on average, a higher heat resistance at 90 degrees Celsius and a lower germination, particularly at 7 degrees Celsius, than spores from the other strains. No difference between the three groups in their growth kinetics at 24 degrees Celsius, 37 degrees Celsius, and pH 5.0, 7.0, and 8.0 was observed. Our survey shows that emetic toxin-producing strains of B. cereus have distinct characteristics, which could have important implication for the risk assessment of the emetic type of B. cereus caused food poisoning. For instance, emetic strains still represent a special risk in heat-processed foods or preheated foods that are kept warm (in restaurants and cafeterias), but should not pose a risk in refrigerated foods.  相似文献   

14.
青花椒精油是一种兼具药用和调味功能的天然精油,已报道具有良好的抑菌活性,应用前景广泛。然而,其抑菌机制却鲜有报道,本研究以蜡样芽孢杆菌(Bacillus cereus)为研究对象,从理化、形态学和代谢水平解析青花椒精油的抑菌机制。结果表明,青花椒精油中包含多种已经报道的抑菌活性成分,其对蜡样芽孢杆菌的最小抑菌质量浓度(minimum inhibitory concentration,MIC)和最小杀菌质量浓度(minimum bactericidal concentration,MBC)分别为2.0、4.0 mg/mL。青花椒精油能破坏蜡样芽孢杆菌的细胞壁和细胞膜,导致细胞质渗漏。在亚抑菌质量浓度(0.5 MIC)下的青花椒精油能够诱导蜡样芽孢杆菌在代谢水平上的显著变化。生物信息学分析表明,青花椒精油对蜡样芽孢杆菌造成了细胞膜损伤、能量代谢障碍、氨基酸代谢紊乱等多方面的影响。本实验对青花椒精油抑制蜡样芽孢杆菌的机制进行探讨,有助于青花椒精油在食品安全领域的开发和应用。  相似文献   

15.
Chlorine, ClO2, and a commercial raw fruit and vegetable sanitizer were evaluated for their effectiveness in killing vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis. The ultimate goal was to use one or both species as a potential surrogate(s) for Bacillus anthracis in studies that focus on determining the efficacy of sanitizers in killing the pathogen on food contact surfaces and foods. Treatment with alkaline (pH 10.5 to 11.0) ClO2 (200 microg/ml) produced by electrochemical technologies reduced populations of a five-strain mixture of vegetative cells and a five-strain mixture of spores of B. cereus by more than 5.4 and more than 6.4 log CFU/ml respectively, within 5 min. This finding compares with respective reductions of 4.5 and 1.8 log CFU/ml resulting from treatment with 200 microg/ml of chlorine. Treatment with a 1.5% acidified (pH 3.0) solution of Fit powder product was less effective, causing 2.5- and 0.4-log CFU/ml reductions in the number of B. cereus cells and spores, respectively. Treatment with alkaline ClO2 (85 microg/ml), acidified (pH 3.4) ClO2 (85 microg/ml), and a mixture of ClO2 (85 microg/ml) and Fit powder product (0.5%) (pH 3.5) caused reductions in vegetative cell/spore populations of more than 5.3/5.6, 5.3/5.7, and 5.3/6.0 log CFU/ml, respectively. Treatment of B. cereus and B. thuringiensis spores in a medium (3.4 mg/ml of organic and inorganic solids) in which cells had grown and produced spores with an equal volume of alkaline (pH 12.1) ClO2 (400 microg/ml) for 30 min reduced populations by 4.6 and 5.2 log CFU/ml, respectively, indicating high lethality in the presence of materials other than spores that would potentially react with and neutralize the sporicidal activity of ClO2.  相似文献   

16.
The possible use of antimicrobials from seven plant essential oils as food preservatives was studied by examining their effects on the growth kinetics of activated Bacillus cereus INRA L2104 spores inoculated into tyndallized carrot broth. The effects of various concentrations of borneol, carvacrol, cinnamaldehyde, eugenol, menthol, thymol, and vanillin were determined. Five microliters of cinnamaldehyde, 15 microl of carvacrol, or 30 mg of thymol per 100 ml of inoculated carrot broth completely inhibited bacterial growth for more than 60 days at 16 degrees C. Lower concentrations of the three antimicrobials prolonged the lag phase and reduced both the exponential growth rate and the final population densities of cultures. The study of the sensory characteristics of the supplemented broths suggested that low concentration of cinnamaldehyde enhanced the taste of carrot broth, and that it did not have any adverse effect on the taste and smell of carrot broth at concentrations less than 6 microl 100 ml(-1).  相似文献   

17.
目的了解广西部分食品中防腐剂使用情况。方法从8类场所随机抽取14类食品样品,按照相应标准检测7种食品防腐剂,对检测结果进行分析。结果共检测2386批次食品样品,防腐剂不合格样品9批次,不合格率为0.38%;脱氢乙酸及其钠盐、山梨酸及其钾盐检出率较高,分别为35.07%、21.17%,山梨酸及其钾盐不合格率最高,为0.21%。山梨酸及其钾盐、苯甲酸及其钠盐、乙二胺四乙酸二钠等3种防腐剂在预包装食品中的检出率高于散装食品,脱氢乙酸及其钠盐和丙酸及其钠盐、钙盐在散装食品中检出率高于预包装食品。蔬菜制品复合使用防腐剂样品占其抽检样品量的58.82%,其次是焙烤食品,占比为32.37%。结论广西企业生产的部分食品中防腐剂使用基本符合GB2760-2014《食品安全国家标准食品添加剂使用标准》要求,少量食品存在超范围超限量添加防腐剂问题,部分食品复合使用两种以上防腐剂。  相似文献   

18.
The purpose of this study was to evaluate the microbiological and sensory quality as well as the safety of ready-to-eat (RTE) cooked foods prepared in and distributed from a centralized kitchen to schools in Argentina. A total of 101 cooked food samples delivered as hot RTE cooked foods (group A) and as RTE cooked foods at room temperature (group B) and 140 surface swab environment samples were collected from February to November 1999. Petrifilm plates were used for aerobic (PAC), coliform (PCC), and Escherichia coli (PEC) counts. Standard methods were used to determine Enterobacteriaceae (EntC) and thermotolerant coliform counts (TCC). Samples were also tested for the presence of Salmonella spp., Staphylococcus aureus, Bacillus cereus, and Clostridium perfringens. Food temperatures just before samples were put into containers ranged from 80 to 98 degrees C and from 28 to 32 degrees C for group A and group B, respectively. For group A food samples, PAC ranged from 1.04 to 3.50 log CFU/g, and PCC, PEC, TCC, and EntC were not detected. For group B food samples, PAC ranged from 3.63 to 6.48 log CFU/g, PCC ranged from 1.90 to 5.36 log CFU/g, TCC ranged from 1.30 to 3.95 log CFU/g, and EntC ranged from 3.60 to 5.46 log CFU/g. Of the foodborne pathogens, only B. cereus was isolated (63.4% of samples) in both food groups (<4 log CFU/g). The microbiological and sensory quality and the safety of group A foods were satisfactory. Large numbers of PAC and EntC detected in group B foods show that better control is needed to avoid potential foodborne diseases.  相似文献   

19.
20.
目的 了解广州市市售食品中蜡样芽胞杆菌污染及分布情况, 发现危险因素。方法 2014~2018年共采集6类共2011份食品样品, 开展蜡样芽胞杆菌监测分析。结果 蜡样芽胞杆菌检出阳性样品共146份, 总体检出率为7.26%。其中6份样品蜡样芽胞杆菌检出值超过105 CFU/g。不同食品类别中小摊贩食品检出率最高, 达到了10.62%, 其次为烘焙食品(8.69%)、寿司(7.50%)、冷藏膳食(6.67%)、盒饭(6.36%)和熟制米面制品(5.00%)。第3季度检出率最高, 为8.77%, 其次为第2季度(7.98%), 最低的是第1季度(5.09%)。不同采样场所中采自小摊贩的食品蜡样芽胞杆菌检出率最高(11.21%), 其次为餐饮单位(9.31%)和农贸肉菜市场(8.07%), 最低的是超市(6.56%)。散装食品蜡样芽胞杆菌检出率(7.61%)高于预包装食品(5.38%)。中心城区食品蜡样芽胞杆菌检出率(9.24%)高于周边区(3.65%)。结论 广州市市售食品存在不同程度的蜡样芽胞杆菌污染, 部分食品存在安全隐患, 相关部门应针对性加强监管, 预防食源性疾病的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号