首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
An efficient red emitting ZnAl2O4:Cr3+ powder phosphor material was prepared at furnace temperatures as low as 500 °C by using the combustion method. The prepared powders were analyzed by X-ray diffraction and scanning electron microscopy techniques. The optical properties were studied using photoluminescence technique. The EPR spectra exhibit an intense resonance signal at g = 3.74 which is attributed to Cr3+–Cr3+ pairs, and the weak resonance signal of at g = 1.97 is attributed to Cr3+ single ion transition. The spin population (N) has been evaluated as a function of temperature. The excitation spectrum exhibits two broad bands in the visible region which are characteristic of Cr3+ ions in octahedral symmetry and the emission spectrum exhibits zero-phonon line frequencies along with vibronic frequencies. The crystal field parameter (Dq) and Racah parameters (B and C) have been evaluated and discussed.  相似文献   

2.
Electron spin resonance of a single crystal of CuGeO3 doped with 2% of Co has been studied at f = 99 GHz in temperature range 1.8–50 K. Contributions to ESR absorption from Cu2+ chains and from Co2+ ions were derived. It is found that functions obtained for ESR integrated intensities: Curie-Weiss for Cu2+ (χCu ∼ C Cu/(T + Θ), with Θ = 92 K) and Curie for Co2+ (χCo ∼ C Co/T) are well consistent with temperature dependence of static magnetic susceptibility. Strong dependence of ESR absorption on polarization of oscillating magnetic field was discovered for Co2+ contribution. Polarization effect was studied for magnetic field applied along a, b and c directions. Values of g-factors of resonance lines are presented.  相似文献   

3.
XRD-pure Li4Mn5O12 spinels are obtained below 600 °C from oxalate and acetate precursors. The morphology consists of nanometric particles (about 25 nm) with a narrow particle size distribution. HRTEM and electron paramagnetic resonance (EPR) spectroscopy of Mn4+ are employed for local structure analysis. The HRTEM images recorded on nano-domains in Li4Mn5O12 reveal its complex structure. HRTEM shows one-dimensional structure images, which are compatible with the (111) plane of the cubic spinel structure and the (001) plane of monoclinic Li2MnO3. For Li4Mn5O12 compositions annealed between 400 and 800 °C, EPR spectroscopy shows the appearance of two types of Mn4+ ions having different metal environments: (i) Mn4+ ions surrounded by Li+ and Mn4+ and (ii) Mn4+ ions in Mn4+-rich environment. The composition of the Li+, Mn4+-shell around Mn4+ mimics the local environment of Mn4+ in monoclinic Li2MnO3, while the Mn4+-rich environment is related with that of the spinel phase. The structure of XRD-pure Li4Mn5O12 comprises nano-domains with a Li2MnO3-like and a Li4/3−x Mn5/3+x O4 composition rather than a single spinel phase with Li in tetrahedral and Li1/3Mn5/3 in octahedral spinel sites. The annealing of Li4Mn5O12 at temperature higher than 600 °C leads to its decomposition into monoclinic Li2MnO3 and spinel Li4/3−x Mn5/3+x O4.  相似文献   

4.
Lithium mixed sodium trititanates with 0.3, 0.5 and 1.0 M percentage of Li2CO3 (general formula Na2−X Li X Ti3O7) have prepared by a high temperature solid-state reaction route. EPR analysis, high temperature range (473–773 K) and variable frequency range (100 Hz–1 MHz) ac conductivity measurements were carried out on prepared sample. The lithium ions are accommodated with the sodium ions in the interlayer space. The EPR specta of lithium mixed sodium Trititanates confirm the partial reduction of Ti4+ ions to Ti3+. Four distinct regions have identified in the LnσT versus 1,000/T plots. Various conduction mechanisms which dependence on concentration, frequency and temperature are reported in this paper for lithium mixed layered sodium Trititanates. The dilation of interlayer space has further been proposed to occur due to inclusion of lithium ions in the interlayer space. The conductivity increases as the concentration of lithium increases. The increase of ionic conductivity in these compounds is due to accommodation of lithium ions with sodium ions in interlayer space.  相似文献   

5.
Electron paramagnetic resonance (EPR) and optical absorption studies have been carried out on Cu2+ ions doped in polyvinyl alcohol films (PVA). EPR spectrum at room temperature exhibits hyperfine structure characteristic of Cu2+ ions in tetragonal symmetry. The EPR spectra have also been recorded at various temperatures. The number of spins participating in the resonance is measured as a function of temperature and the activation energy is calculated. The paramagnetic susceptibility (χ) is calculated from the EPR data at various temperatures and the Curie constant is evaluated from 1/χ versus T graph. The optical absorption spectrum exhibits a broad band which has been assigned to the transition 2B1g  2B2g.  相似文献   

6.
We have inspected the magnetic properties of polycrystalline La0.4Bi0.1Ca0.5MnO3 using electron spin resonance (ESR) in the temperature range 150–280 K. The temperature dependence of magnetization indicates that the Curie temperature is T C= 225 K. ESR spectra revealed that the sample is not completely paramagnetic above its Curie temperature through the presence of ferromagnetic interactions in the temperature range 225–270 K which can be attributed to the presence of Griffiths phase in this temperature range. The sample becomes completely paramagnetic above 270 K. The presence of Griffiths phase can be attributed to the disorder induced by the 6 s 2 lone pair electrons of Bi3+ ions.  相似文献   

7.
Gd3Ga5O12 garnet was prepared by a solution combustion method and characterized using powder X-ray diffraction, electron paramagnetic resonance (EPR) and optical spectroscopic techniques. EPR spectrum of the samples at ambient and low temperatures exhibited resonance signal at g?≈?2 attributed to Gd3+ ions disposed in an octahedral symmetry. The optical absorption spectrum showed a band centered at 274 nm attributed to 8S7/26IJ transition of the Gd3+ ions. The excitation spectrum showed a maximum at 273 nm along with two relatively weaker peaks at 276 and 279 nm. These three excitation bands were assigned to the transitions 8S7/26IJ. The emission spectrum showed two peaks centered at 311 and 306 nm that were assigned to the transitions 6P7/28S7/2 and 6P5/28S7/2 of Gd3+, respectively. To evaluate the phosphor performance, several magnetic and thermodynamic parameters for the system were calculated adopting standard procedure.  相似文献   

8.
In this paper we report the investigation of transition metal oxide compound, La0·67Ca0·25Sr0·04Ba0·04MnO3 (LCSBMO), along with La0·67Ca0·33MnO3 (LCMO), synthesized by sol–gel route under identical conditions. The effect of simultaneous low level substitution of large size ions such as Sr2+ and Ba2 +  for Ca2 +  ions on the electronic transport and magnetic susceptibility properties are analysed and compared apart from microstructure and lattice parameters. The temperature dependent electrical transport of the polycrystalline pellets of LCSBMO and LCMO when obeying the well studied law, r = r0 + r2   T2\rho = \rho_{0} + \rho_{2} \;T^{2} for T < T MI , is observed to differ by more than 50% from the values of ρ 0 and ρ 2, with the former compound showing enhanced electrical conductivity than the latter. Similarly in fitting the adiabatic small polaron model for resistivity data of both the samples for T > T MI , the polaron activation energy is found to differ by about 11%. In addition, the temperature dependent a.c. magnetic susceptibility study of the compounds shows a shift of about 6% in the paramagnetic to ferromagnetic transition temperature (285 K for LCSBMO and 270 K for LCMO).  相似文献   

9.
One layer of self-assembled Ge quantum dots with Si barrier were grown on high resistivity (100) p-type Si substrates by rapid thermal chemical vapor deposition followed by Mn ion implantation and post-annealing. A presence of ferromagnetic structure was confirmed in the dilute magnetic quantum dots (DMQD). The DMQD through 10 min annealing was found to be homogeneous, and to exhibit p-type conductivity, insulating property, and ferromagnetic ordering with a Curie temperature, T c=170 K. On the other hand, the DMQD through 30 and 60 min annealing was found to be semi-insulating and ferromagnetic ordering with a Curie temperature over 300 K. The XRD data show that there is a phase separation of Mn rich phases Mn5Ge3 from MnGe nanostructure. Therefore, it is likely that the ferromagnetic exchange coupling of sample with T c=170 K is hole-mediated and the ferromagnetism in sample with T c>300 K is due to Mn5Ge3 phase.  相似文献   

10.
The electron paramagnetic resonance (EPR) parameters (the anisotropic g factors g x , g y , g z , and the hyperfine structure constants A x , A y , and A z ) of the two orthorhombic Er3+ centers in Bi2Sr2 YCu2O8 are theoretically studied from the perturbation formulas of these parameters for a 4f11 ion in orthorhombic symmetry. In these formulas, the contributions due to the admixtures of various states are taken into account, and the orthorhombic field parameters are determined from the superposition model and the local geometry of Bi3+ site in Bi2Sr2 YCu2O8. The calculated EPR parameters show reasonable agreement with the observed values. The anisotropy g z >g x (g y ) for the g factors may be attributed to the compression of the ligand octahedra in the Er3+ centers.  相似文献   

11.
The substituted nonstoichiometric perovskite Pr1−x Ca x MnO3−y compounds have been synthesized by a standard combustion technique, which show uniphase solid solutions. The all samples of the Pr1−x Ca x MnO3−y system show an orthorhombic crystal system and the cell volumes are decreased with increasing the larger amounts of substituted atoms or the increasing x values. The mixed valence of Mn ions is identified by the XAS (XANES/EXAFS) spectroscopy and the amounts of Mn4+ ions are determined by an iodometric titration method. Nonstoichiometric chemical formulas of the Pr1−x Ca x Mn1−τ3+Mnτ4+O3−y compounds have been obviously formulated. Magnetic properties are investigated by SQUID and thus the Pr1−x Ca x MnO3−y (x = 0.4, 0.6, and 0.8) compounds show the transition from antiferromagnetic state to paramagnetic state. The Pr1−x Ca x MnO3−y (x = 0.0, 0.2, and 1.0) compounds show the transition from ferromagnetic state to paramagnetic state. The facts that Mn4+ contents play important roles in the magnetic ordering have been found out. The transport properties have been studied by the DC electrical conductivity measurement under magnetic fields of 0 G and 3 kG. Maximum and minimum MR ratios are 1016% of the Pr0.6Ca0.4MnO2.846, and −77.5% of the PrMnO3.021 compound, respectively.  相似文献   

12.
Lead-free (1-x)K0.49Na0.51NbO3-xLiNbO3 (KNN-LN, x = 0 ~ 0.08) piezoelectric ceramics were prepared by the conventional solid-state sintering method. The effects of LiNbO3 doping amount x on the phase transition behavior and the electrical properties of KNN-LN ceramics were investigated. By increasing LiNbO3 doping amount x, the orthorhombic-tetragonal polymorphic phase transition (PPT) temperature (T o–t) of KNN-LN ceramics shifted downwards, however, the Curie temperature (T c) slightly moved upwards. The room temperature phase structure thus changed from orthorhombic to tetragonal across the compositions with 0.05 ≤ x ≤ 0.06, named as PPT region. The composition with x = 0.06 in the tetragonal side of PPT region exhibited optimized electrical properties of d 33 = 246pC/N, k p = 41.6%, ε r = 679, tgδ = 0.028, and Q m = 52. In addition to its very high T c = 467 °C, this ceramic can be an excellent candidate for replacing the lead-based piezoceramics in high temperature applications.  相似文献   

13.
The luminescence properties of Sm3+ ions in YAl3B4O12 were studied upon synchrotron excitation in the 3.8–11 eV region. In addition to the 4f → 4f excitation bands, the excitation spectra of the Sm3+ emission contain broad bands at 6.1 and ~7.0 eV. These bands are attributed to charge transfer transition in Sm3+–O2− complexes and 4f → 5d transition of Sm3+ ions, respectively. The optical absorption edge of YAl3B4O12 was determined at 7.3 eV. A comparison with the results of electronic structure calculations on YAl3B4O12 is also made.  相似文献   

14.
In this research, we reported the synthesis of Eu2+ and Dy3+ co-doped SrAl2O4 phosphor nanopowders with high brightness and long afterglow by urea-nitrate solution combustion synthesis (SCS) at 600 °C, followed by heating the resultant combustion ash at 1,200 °C in a weak reductive atmosphere (5% H2 + 95% N2). The broad-band UV-excited luminescence of the SrAl2O4: Eu2+, Dy3+ nanopowders was observed at λ max = 517 nm due to transitions from the 4f65d1 to the 4f7 configuration of the emission center (Eu2+ ions). The excitation spectra consist of 240- and 254 nm broad peaks. Finally, it was found that the optimum ratio of urea is 2.5 times higher than theoretical quantities for the best emission condition of SrAl2O4: Eu2+, Dy3+ phosphor nanopowders.  相似文献   

15.
A series of glass comprising of SiO2–MgO–B2O3–Y2O3–Al2O3 in different mole ratio has been synthesized. The crystallization kinetics of these glasses was investigated using various characterization techniques such as differential thermal analysis (DTA), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Crystallization behavior of these glasses was markedly influenced by the addition of Y2O3 instead of Al2O3. Addition of Y2O3 increases the transition temperature, T g, crystallization temperature, T c and stability of the glasses. Also, it suppresses the formation of cordierite phase, which is very prominent and detrimental in MgO-based glasses. The results are discussed on the basis of the structural and chemical role of Y3+ and Al3+ ions in the present glasses.  相似文献   

16.
Synthesis, X-ray diffraction, and photoluminescence (PL) investigations of SrZnO2 doped with Eu3+ were carried out in order to characterize the material. The emission spectra showed a broad band emission at 525 nm attributed to oxygen defect centers in the host matrix, along with peaks corresponding to the 5D0 → 7F j (j = 1, 2) transitions of Eu ion under 250 nm excitation. PL decay time studies were done to confirm these investigations. Time-resolved emission spectrometric (TRES) study was carried out to extract the emission spectra of the Eu ion which was buried under the broad band emission. After giving suitable delay times and by choosing a proper time gate, transitions due to 5D0 → 7F j (j = 0, 1, 2, 3, and 4) could be observed. Judd–Ofelt intensity parameters and other radiative properties for the system were evaluated from this emission spectrum and decay time data by adopting standard procedure. The color coordinates of the system were also evaluated and plotted on a standard CIE index diagram. The observations showed that the SrZnO2:Eu3+material has near white light emission (also considering the emission from host) whereas, the extracted emission spectrum due to only Eu ions has a near red emission.  相似文献   

17.
The crystallization kinetics of the TeO2/TiO2/As2O3 glassy system was studied under nonisothermal conditions. The method was applied to the experimental data obtained by differential thermal analysis (DTA), using continuous-heating techniques. In addition, two approaches were used to analyze the dependence of glass transition temperature (T g) on the heating rate (β): One is the empirical linear relationship between (T g) and (β); The other approach is the use of straight line from the plot of ln( T\textg2 /b ) \textvs . 1/T\textg \ln \left( {T_{\text{g}}^{2} /\beta } \right)\,{\text{vs}} .\,1/T_{\text{g}} for evaluation of the activation energy for glass transition. The crystallization results are analyzed, and both the activation energy of crystallization process and the crystallization mechanism are characterized.  相似文献   

18.
A new glass system SnO–MgO–P2O5 with low viscosity has been developed by a melt-quenching method. Formation, thermal properties, and chemical durability of these glasses have been investigated. For a constant P2O5 concentration, the glass formation ability is enhanced with the increasing Sn/(Sn + Mg) ratio. The glasses exhibit low glass transition temperature (T g = 270–400 °C), low dilatometric softening temperature (T DS = 290–420 °C), and high thermal expansion coefficient (CTE = 110–160 × 10−7 K−1). With the increasing Sn/(Sn + Mg) ratio, T g and T DS decrease, and CTE increases. When Sn/(Sn + Mg) ratio is varied, the relationship between chemical durability and thermal properties of the present glasses is not consistent with what expected in general cases. It is noted that the glasses with 32–32.5 mol% P2O5 exhibit excellent chemical durability and tunable T g, T DS, and CTE (by varying Sn/(Sn + Mg) ratio).  相似文献   

19.
CuMnO2 is prepared via Cu+ → Li+ exchange in molten copper (I) chloride. It crystallizes in a monoclinic structure (SG C2/m) where the MnO6 octahedra elongation is ascribed to the Yahn–Teller (Y–T) effect of Mn3+ ions. From chemical analysis, the oxide is more accurately formulated as CuMnO2.01. Above 250 °C, it undergoes a reversible transition to spinel Cu x Mn3−x O4 and beyond 940 °C it converts back to Cu1.1Mn0.9O2. Extrapolation of high-temperature magnetic data indicates T-intercept θ p of −450 K and an effective moment of 5.22 μB, consistent with strong antiferromagnetism in the basal plans and high spin (HS) configuration Mn3+. This value is slightly larger than that of the spin only moment, a behavior ascribed to Cu2+ originating from oxygen insertion. As prepared, CuMnO2 displays p-type conductivity with an activation energy of 0.16 eV. Most holes generated upon band gap excitation are trapped on Cu+ ions and the conduction occurs by small polarons hopping between neighboring sites. The linear increase of thermopower for Cu1.05Mn0.95O2 with temperature indicates a hole mobility μ300 K (3.5 × 10-6 cm2 V−1 s−1) thermally activated. CuMnO2 is made p- and n-type and the difference in the carriers mobilities is attributed to different oxygen polyhedra. The title oxide, characterized photo electrochemically, exhibits a pH-insensitive flat band potential (+0.13 VSCE). The valence band, located at 5.3 eV below vacuum, is made up of Cu 3d orbital. As application, the powder showed a good performance for the H2-photo evolution.
Mohamed TrariEmail:
  相似文献   

20.
Solid-state reaction synthesised K2Ti6O13 lead-free ceramic was characterized using XRD, SEM, and X-band EPR, at room temperature. EPR-spectra showed the presence of ( \textFe\textTi - V\textO ·· ) \left( {{\text{Fe}}_{\text{Ti}}^{\prime } - V_{\text{O}}^{ \bullet \bullet } } \right) defect associate dipoles, in orthorhombic phase, responsible for the broadening of the dielectric anomaly identified in the ε r (T) plots at T C  ~ 300 °C. This anomaly resembled a ferroelectric–paraelectric type phase transition following Curie–Weiss type trend. Besides, dielectric loss mechanism jointly represented electrical conduction, dipole orientation, and space charge polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号