首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bowen S  Zeng H  Hilty C 《Analytical chemistry》2008,80(15):5794-5798
Nuclear magnetic resonance, through observation of chemical shift, allows the separate identification of each atom in a molecule. Thus, NMR spectra impart an often unrivaled wealth of information on molecular structure. A particular advantage of NMR spectroscopy is the ability to record multidimensional spectra, which provide correlations between atoms. When compared to other techniques, such as optical spectroscopy, the acquisition of NMR spectra is however an insensitive process, requiring samples of high concentration and long acquisition times. Recently, it has been demonstrated that dynamic nuclear polarization, a hyperpolarization technique, can increase the NMR signal by several orders of magnitude. Here, we present a robust method that allows recording two-dimensional chemical shift correlations from such hyperpolarized molecules. The method makes use of an apparent scaling of the scalar coupling observed on one type of atom, when an off-resonance decoupling field is applied to another type of atom. Thus, two-dimensional chemical shift correlations can be read directly from a small number of scans acquired using a hyperpolarized sample. Due to the ease of implementing this technique on commercial hyperpolarization and NMR equipment, it appears ideally suited for routine application, for example, to obtain carbon-proton chemical shift correlations in organic molecules.  相似文献   

2.
In this work we propose a single procedure for the electrochemical growth of variable section, self-assembled ZnO columns by dynamic polarization currents instead of the conventional potentiostatic/galvanostatic procedures. A flexible ITO electrode was submerged in 5 mM ZnCl + 0.1KCl and the ZnO structures were formed by galvanodynamic current ramps. Some of the structures analyzed showed columns with variable sections and others showed hollow columns. The possibility of modifying the section would enhance the properties of ZnO nanostructured layers, since this would increase the specific area and the light-capturing capacity of solar devices and sensors.  相似文献   

3.
The distribution of gallium nanocrystals in mesoporous MCM-41 host were analyzed by continuous-flow hyperpolarized 129Xe NMR spectroscopy. In contrast to unclear TEM images for the high metal contents, laser-polarized 129Xe probe can detect the whole distribution of gallium in the MCM-41 host. It is found that gallium nanocrystals are included in the mesochannels of MCM-41; a part of them also remains in the interparticle voids. The distribution of gallium metal in MCM-41 is heterogeneous. Not all the mesochannels host metallic gallium even at a high gallium loading of 65.1 wt %. Variable temperature measurements can provide information on the xenon adsorption parameters. This approach opens a sensitive way to probe the distribution of high content species in porous host materials.  相似文献   

4.
Measurements are given on the bulk nuclear spin polarization in a liquid-solid3He mixture cooled by compressional cooling to below 5 mK in a magnetic field of 54.5 kG. Owing to the low Pauli spin susceptibility of liquid3He, the observed polarization is primarily due to solid3He. A maximum average nuclear polarization of 47% was observed, although the corresponding solid3He polarization is believed to be higher. Our novel detection system, using a dual directional coupler for cw NMR, is a simple and versatile means of working in the awkward frequency range around 180 MHz. We also report transient heating measurements in the3He system which indicate that the internal thermal equilibrium time in bulk solid3He on the3He melting curve appears to be quite short (less than 5 min) at these temperatures. One type of transient measurement is complicated by the dramatic effect of the contribution of the3He nuclear magnetization to the total local magnetic field. This contribution is considered via a simple model.This work has been supported by the U.S. Atomic Energy Commission under Contract No. AT(04-3)-34, P.A. 143.  相似文献   

5.
We have polarized theJ = 0,I = 2 spins in solid D2 in 14.5 T to 13%. We condensed D2 in the form of small particles in a Pomeranchuk cell attached to a large dilution refrigerator. In this way we could cool the spins to 35 mK. The polarization was measured using cw NMR and a relaxation time at 35 mK of 360 sec was obtained in a hole burning experiment.  相似文献   

6.
In this study, we study a possibility to measure the transverse and longitudinal relaxation times of a collection of polarized nuclear spins located in the region of a quantum wire via its conductance. The interplay of an external in-plane magnetic field, spin-orbit interaction, and the changing field of the spin-polarized nuclei cause the conductance of the quantum wire to evolve in time. We show that it is possible to extract the transverse and longitudinal relaxation times of the spin-polarized nuclei from the time dependence of the conductance.  相似文献   

7.
8.
The applicability of Kalman's filter equations to the solution of inverse boundary problems of heat conduction is investigated.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. 5, pp. 906–911, November, 1981.  相似文献   

9.
A novel method, referred to as the stochastic reduced order model (SROM) method, is proposed for finding statistics of the state of linear dynamic systems with random properties subjected to random noise. The method is conceptually simple, accurate, computationally efficient, and non-intrusive in the sense that it uses existing solvers for deterministic differential equations to find state properties.Bounds are developed on the discrepancy between the exact and the SROM solutions under some assumptions on system properties. The bounds show that the SROM solutions converge to the exact solutions as the SROM representation of the vector of random system parameters is refined. Numerical examples are presented to illustrate the implementation of the SROM method and demonstrate its accuracy and efficiency.  相似文献   

10.
Abstract

A review of the solution techniques most widely used in nonlinear structural dynamics is presented. For nonlinear transient responses several explicit and implicit direct integration methods are compared with respect to accuracy, stability and computational efficiency. It is concluded that the choice of a suitable method depends upon the nature of the method, the formulation of finite element models, and the problem itself. In general, the Park method seems to be superior to the others in nonlinear dynamic analysis. If equilibrium iterations are performed at each time step, the Newmark — ß= 1/4 method should be preferred.  相似文献   

11.
The nuclear spin dynamics in nuclear spin ordered solid3He in low magnetic fields on the melting curve has been studied by pulsed NMR down to 0.6 mK. The free induction decay signals (FID) were measured in single crystals of solid3He at three operating frequencies of 920, 1380, and 1840 kHz. The FIDs were nonexponential and dependent on the rf pulse strength p H 1 t w , where is the gyromagnetic ratio,H 1 is the rf field strength, andt w is the pulse width. At small p they decayed almost linearly in time with a small exponential tail at the end. When p was further increased they became shorter and neither exponential nor linear in time. At large p they decayed very rapidly and sometimes could not be observed at all because of the dead time of the NMR detection system. Such behavior of the FID was observed in many different single crystals in the given temperature range at 920 kHz. Tsubota and Tsuneto have shown by solving the nonlinear equations of motion numerically that the motion of the nuclear spin becomes chaotic when the tipping angle exceeds a critical value. Comparing their result with our experimental results, we concluded that some of the results of the rapid decay of the FID at large p might be attributed to the onset of the chaotic motion. At 1840 kHz it is expected that the nonlinear effects in the equations of motion become less effective than that at 920 kHz. In fact, at this operating frequency the FIDs even at large p and the tipping angle-dependent frequency shift could be observed. These frequency shifts were in rather good agreement with Namaizawa's theory provided an effective tipping angle was taken into account.  相似文献   

12.
We consider the problem of determining the lot sizes that satisfy the demands of remanufactured products over a given planning horizon with discrete time periods. Remanufacturing, in which used or end-of-life products are restored to like-new condition, typically consists of disassembly, reprocessing and reassembly processes, and hence the lot sizes are determined for each of the three processes. The objective is to minimise the sum of setup and inventory holding costs occurring at the three processes. To represent the problem mathematically, we suggest a mixed integer programming model by combining the existing ones for disassembly and assembly systems. After proving that the problem is NP-hard, we suggest two dynamic programming based heuristics, called the aggregation and the decomposition type heuristics in this paper. Computational experiments were done on various test instances, and the results show that the two heuristics give near-optimal solutions in a short amount of computation time. Also, the performances of the heuristics are compared according to different values of problem parameters.  相似文献   

13.
Nuclear spins are promising candidates for quantum information processing because their good isolation from the environment precludes the rapid loss of quantum coherence. Many strategies have been developed to further extend their decoherence times. Some of them make use of decoupling techniques based on the Carr-Purcell and Carr-Purcell-Meiboom-Gill pulse sequences. In many cases, when applied to inhomogeneous samples, they yield a magnetization decay much slower than that of the Hahn echo. However, we have proved that these decays cannot be associated with longer decoherence times, as coherences remain frozen. They result from coherences recovered after their storage as local polarization and thus they can be used as memories. We show here how this freezing of the coherent state, which can subsequently be recovered after times longer than the natural decoherence time of the system, can be generated in a controlled way with the use of field gradients. A similar behaviour of homogeneous samples in inhomogeneous fields is demonstrated. It is emphasized that the effects of inhomogeneities in solid-state nuclear magnetic resonance, independently of their origin, should not be disregarded, as they play a crucial role in multipulse sequences.  相似文献   

14.
Highly polarized nuclear spins within a semiconductor quantum dot induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin, or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of quantum-dot-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond timescale of Overhauser fields on the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using coherent control of an ensemble of 10(5) optically polarized nuclear spins by sequences of short radiofrequency pulses. These results open the way to a new class of experiments using radiofrequency techniques to achieve highly correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-μK nuclear spin temperatures, rapid adiabatic passage, and spin squeezing.  相似文献   

15.
Elucidation of the composition of chemical-biological samples is a main focus of systems biology and metabolomics. Due to the inherent complexity of these mixtures, reliable, efficient, and potentially automatable methods are needed to identify the underlying metabolites and natural products. Because of its rich chemical information content, nuclear magnetic resonance (NMR) spectroscopy has a unique potential for this task. Here we present a generalization and application of a recently introduced NMR data collection, processing, and analysis strategy that circumvents the need for extensive purification and hyphenation prior to analysis. It uses covariance TOCSY NMR spectra measured on a 1-mm high-temperature cryogenic probe that are analyzed by a spectral trace clustering algorithm yielding 1D NMR spectra of the individual components for their unambiguous identification. The method is demonstrated on a metabolic model mixture and is then applied to the unpurified venom mixture of an individual walking stick insect that contains several slowly interconverting and closely related metabolites.  相似文献   

16.
The full polarization properties of anisotropic biomolecule optical scattering are investigated theoretically. By using a simple ellipsoid model of a single biomolecule, the scattering fields and Mueller matrices are derived from fundamental electromagnetism theory. The energy of scattered photons is not necessarily equal to that of the incident laser beam. This theory can be generally applied to the experiments of fluorescence, Raman scattering, and second-harmonic generation. Fitting of a single tetramethylrhodamine-labeled lipid molecule's anisotropic imaging experiment is demonstrated. This theory has provided a fundamental simulation analysis tool of understanding and developing the optical polarimetric sensing science and technology of the anisotropic biomolecules and biomedium. The medium dielectric constant of the model ellipsoid provides a theoretic background for correlating the optical polarization properties of a biomolecule to its microscopic electronic structure.  相似文献   

17.
18.
19.
20.
We give the mathematical statement of a two-dimensional dynamic problem of electromagnetothermoelasticity for cylindrical bodies and deduce the primary equations of electrodynamics and thermoelasticity for the complex problem. The primary equations of the two-dimensional dynamic problem of thermoelasticity in stresses are reduced to a system of hierarchically connected wave equations. The boundary-value problems are formulated for a long hollow cylinder and a cylindrical beam whose cross section has the shape of a circular sector. These bodies are in the state of plane deformation and subjected to the action of a nonstationary electromagnetic field on their outer surfaces. We propose a method for the solution of these boundary-value problems. Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 36. No. 3, pp. 35–41. May-June. 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号