首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The xylP gene of Lactobacillus pentosus, the first gene of the xylPQR operon, was recently found to be involved in isoprimeverose metabolism. By expression of xylP on a multicopy plasmid in Lactobacillus plantarum 80, a strain which lacks active isoprimeverose and D-xylose transport activities, it was shown that xylP encodes a transporter. Functional expression of the XylP transporter was shown by uptake of isoprimeverose in L. plantarum 80 cells, and this transport was driven by the proton motive force generated by malolactic fermentation. XylP was unable to catalyze transport of D-xylose.  相似文献   

2.
A microbiological assay has been developed to help detect adulteration in orange juice. Under standard assay conditions with diluted orange juice, the growth of Lactobacillus plantarum is proportional to the concentration of juice in the assay mixture. Imitation orange beverages did not support growth. Growth was also independent of the normal levels of common beverage ingredients such as sugar, acids, butylated hyroxyanisole, and orange oil. Commercial orange juices reconstituted from concentrates from various sources were assayed by the microbiological procedure, and the variability of results (coefficient of variation 24%) was about the same as or slightly lower than that for many of the other constituents used to estimate adulteration.  相似文献   

3.
A 3-kb region, located downstream of the Lactobacillus brevis xylA gene (encoding D-xylose isomerase), was cloned in Escherichia coli TG1. The sequence revealed two open reading frames which could code for the D-xylulose kinase gene (xylB) and another gene (xylT) encoding a protein of 457 amino acids with significant similarity to the D-xylose-H+ symporters of E. coli, XylE (57%), and Bacillus megaterium, XylT (58%), to the D-xylose-Na+ symporter of Tetragenococcus halophila, XylE (57%), and to the L-arabinose-H+ symporter of E. coli, AraE (60%). The L. brevis xylABT genes showed an arrangement similar to that of the B. megaterium xylABT operon and the T. halophila xylABE operon. Southern hybridization performed with the Lactobacillus pentosus xylR gene (encoding the D-xylose repressor protein) as a probe revealed the existence of a xylR homologue in L. brevis which is not located with the xyABT locus. The existence of a functional XylR was further suggested by the presence of xylO sequences upstream of xylA and xylT and by the requirement of D-xylose for the induction of D-xylose isomerase, D-xylulose kinase, and D-xylose transport activities in L. brevis. When L. brevis was cultivated in a mixture of D-glucose and D-xylose, the D-xylose isomerase and D-xylulose kinase activities were reduced fourfold and the D-xylose transport activity was reduced by sixfold, suggesting catabolite repression by D-glucose of D-xylose assimilation. The xylT gene was functionally expressed in Lactobacillus plantarum 80, a strain which lacks proton motive force-linked D-xylose transport activity. The role of the XylT protein was confirmed by the accumulation of D-xylose in L. plantarum 80 cells, and this accumulation was dependent on the proton motive force generated by either malolactic fermentation or by the metabolism of D-glucose. The apparent affinity constant of XylT for D-xylose was approximately 215 microM, and the maximal initial velocity of transport was 35 nmol/min per mg (dry weight). Furthermore, of a number of sugars tested, only 6-deoxy-D-glucose inhibited the transport of D-xylose by XylT competitively, with a Ki of 220 microM.  相似文献   

4.
The phosphate- and oxygen-dependent pyruvate oxidase from Lactobacillus plantarum is a homotetrameric enzyme that binds 1 FAD and 1 thiamine diphosphate per subunit. A kinetic analysis of the partial reactions in the overall oxidative conversion of pyruvate to acetyl phosphate and CO2 shows an indirect activation of the thiamine diphosphate by FAD that is mediated by the protein moiety. The rate constant of the initial step, the deprotonation of C2-H of thiamine diphosphate, increases 10-fold in the binary apoenzyme-thiamine diphosphate complex to 10(-2) s-1. Acceleration of this step beyond the observed overall catalytic rate constant to 20 s-1 requires enzyme-bound FAD. FAD appears to bind in a two-step mechanism. The primarily bound form allows formation of hydroxyethylthiamine diphosphate but not the transfer of electrons from this intermediate to O2. This intermediate form can be mimicked using 5-deaza-FAD, which is inactive toward O2 but active in an assay using 2,6-dichlorophenolindophenol as electron acceptor. This analogue also promotes the rate constant of C2-H dissociation of thiamine diphosphate in pyruvate oxidase beyond the overall enzyme turnover. Formation of the catalytically competent FAD-thiamine-pyruvate oxidase ternary complex requires a second step, which was detected at low temperature.  相似文献   

5.
The discrimination of the orientation of a line improves with line length, reaching an optimum when a foveal line is approximately 0.5 degrees long. We studied the effect of eliminating sections of the line, of displacing them out of alignment, and of delaying them. Orientation discrimination thresholds are only a little elevated when a 25-arcmin line is replaced by three equally spaced collinear 5-arcmin segments. Two collinear 5-arcmin segments show better thresholds than a single one when they are separated by as much as 20 arcmin. But thresholds are impaired by bringing line segments out of collinearity by as little as 1 arcmin. Asynchrony of up to 50 ms can be tolerated, but when the middle segment of a three-line pattern is delayed by approximately 100 ms there is active inhibition, thresholds being now higher than when the middle segment is absent. It is concluded that for signals to address the orientation discrimination mechanism optimally, they have to be contained inside a narrow spatial corridor and be presented within a time window of approximatley 50 ms, but that some spatial summation can take place over a length of > or = 0.5 degrees in the fovea. Because short lines made of black and white collinear segments do not have good orientation thresholds, whereas longer and interrupted lines do, it is concluded that what is involved is potentiating interaction between collinearly arranged neurons with identical orientation selectivity rather than summation of signals within the receptive fields of single neurons.  相似文献   

6.
7.
8.
9.
The role of the actin cytoskeleton and/or GTPases of the Rho/Rac-family in glucose transport regulation was investigated in 3T3-L1 cells with clostridial toxins which depolymerize actin by inactivation of Rho/Rac (Clostridium difficile toxin B and Clostiridium sordellii lethal toxin (LT)) or by direct ADP-ribosylation (Clostridium botulinum C2 toxin). Toxin B and C2 reduced insulin-stimulated, but not basal, 2-deoxyglucose (2-DOG) uptake rates in 3T3-L1 fibroblasts. In parallel, the toxins produced morphological alterations of the cells reflecting disruption of the actin cytoskeleton. Both toxins reduced the maximum response to insulin but failed to alter the half-maximally stimulating concentrations of insulin. In 3T3-L1 adipocytes, the lethal toxin reduced the effect of insulin on 2-DOG uptake, whereas toxin B and C2 failed to affect glucose transport or cell morphology. When cells were exposed to the toxins after treatment with insulin, both toxin B and the lethal toxin, in contrast to the phosphatidylinositol (PI) 3-kinase inhibitor wortmannin, failed to reduce the 2-DOG uptake rates. Thus, both translocation to the plasma membrane and internalization of glucose transporters were inhibited by the toxins, whereas the PI 3-kinase inhibitor selectively affects translocation. The data suggest that the effects of the clostridial toxins on trafficking of glucose transporters are mediated by the depolymerization of the actin cytoskeleton and are an indirect consequence of Rho or Rac inactivation. It is suggested that pathways signalling through Rac or Rho may play a modulatory role in glucose transport regulation through their effects on the actin network.  相似文献   

10.
The pem locus is responsible for stable maintenance of plasmid R100 and consists of two genes, pemI and pemK. The pemK gene product is a growth inhibitor, while the pemI gene product is a suppressor of this inhibitory function. We found that the PemI amino acid sequence is homologous to two open reading frames from Escherichia coli called mazE and orf-83, which are located at 60 and 100 min on the chromosome, respectively. We cloned and sequenced these loci and found additional open reading frames, one downstream of each pemI homolog, both of which encode proteins homologous to PemK. The pem locus homolog at 60 min was named chpA and consists of two genes, chpAI and chpAK; the other, at 100 min, was named chpB and consists of two genes, chpBI and chpBK. The distal portion of chpBK was found to be adjacent to the ppa gene that encodes pyrophosphatase, whose map position had not been previously determined. We then demonstrated that the chpAK and chpBK genes encode growth inhibitors, while the chpAI and chpBI genes encode suppressors for the inhibitory function of the ChpAK and ChpBK proteins, respectively. These E. coli pem locus homologs may be involved in regulation of cell growth.  相似文献   

11.
"Killer" strains of Saccharomyces cerevisiae are those that harbor a double-stranded RNA plasmid and secrete a toxin that kills only strains not carrying this plasmid (sensitives). Two chromosomal genes (kex1 and kex2) are required for the secretion of toxin by plasmid-carrying strains. The kex2 gene, which maps at a site distinct from the mating-type locus, is also required for normal mating by alpha strains and meiotic sporulation in all strains. Strains that are alpha mating-type and kex2 fail to secrete the pheromone alpha-factor or to respond to the alpha-factor II pheromone which causes a morphological change, but they do respond to alpha-factor I which causes G1 arrest in alpha cells. Strains that are alpha mating-type and kex2 show no defect in mating; pheromone secretion, or response to alpha-factor. Diploids that are homozygous for the kex2 mutation, unlike wildtype or heterozygous diploids, fail to undergo sporulation, with the defect occurring in the final spore maturation stage. These same defects in the sexual cycle are present in all kex2 mutants independent of the presence of the "killer" plasmid.  相似文献   

12.
We have addressed the expression of long-term potentiation (LTP) in hippocampal CA1 by comparing AMPA and NMDA receptor-(AMPAR- and NMDAR-) mediated postsynaptic signals. We find that potentiation of NMDAR-mediated signals accompanies LTP of AMPAR-mediated signals, and is associated with a change in variability implying an increase in quantal content. Further, tetanic LTP of NMDAR-mediated signals can be elicited when LTP of AMPAR-mediated signals is prevented. We propose that LTP is mainly expressed presynaptically, and that, while AMPARs respond only to glutamate from immediately apposed terminals, NMDARs also sense glutamate released from terminals presynaptic to neighboring cells. We also find that tetanic LTP increases the rate of depression of NMDAR-mediated signals by the use-dependent blocker MK-801, implying an increase in the glutamate release probability. These findings argue for a presynaptic contribution to LTP and for extrasynaptic spill-over of glutamate onto NMDARs.  相似文献   

13.
Growth of, and acid production by Bifidobacterium lactis and Lactobacillus acidophilus using ovine and caprine milk as media were evaluated for their potential use in cheese-making. A protein hydrolysate (MHP, obtained from incubation of bovine milk with protease) or a mixture of free amino acids (FAA, similar to the amino acid fraction of MHP) was added as a nitrogen enrichment source. Bifidobacterium lactis and Lact. acidophilus were inoculated at 50 ml l-1 and incubated at 37 degrees C with growth supplements added at ratios in the range 25-50 ml l-1. The maximum viable counts of Bif. lactis were lower in plain ovine and caprine milk than in nitrogen-enriched milk, and MHP was a better growth promoter than FAA. A similar trend was observed with the acidity values developed, and attempts to correlate growth with acidity were successfully performed. The highest uptake rates of amino acids in ovine milk were observed for lysine, isoleucine, leucine and proline, but only isoleucine was taken up at a similar rate in caprine milk. Final bacterial viable counts of Lact. acidophilus in the plain and enriched forms of ovine milk did not differ greatly from each other, although FAA was statistically a better growth promoter than MHP. Unlike results in ovine milk, cultures of Lact. acidophilus in caprine milk exhibited drops of 1-1.5 log cycles in viable cell counts by 24 h of fermentation, irrespective of the nature of the nitrogen source. Parallel studies indicated that the excess of fatty acid residues in caprine milk could be responsible for the poor growth of Lact. acidophilus.  相似文献   

14.
A highly active alpha-amylase (76,250 Da) secreted by the raw starch-degrading yeast Lipomyces kononenkoae strain IGC4052B was purified and characterized. Using high performance liquid chromatography (HPLC), end-product analysis indicated that the L. kononenkoae alpha-amylase acted by endo-hydrolysis on glucose polymers containing alpha-1,4 and alpha-1,6 bonds, producing mainly maltose, maltotriose and maltotetraose. The following NH2-terminal amino acids were determined for the purified enzyme: Asp-Cys-Thr-Thr-Val-Thr-Val-Leu-Ser-Ser-Pro- Glu-Ser-Val-Thr-Gly. The L. kononenkoae alpha-amylase-encoding gene (LKA1), previously cloned as a cDNA fragment, was expressed in Saccharomyces cerevisiae under the control of the PGK1 promoter. The native signal sequence efficiently directed the secretion of the glycosylated protein in S. cerevisiae. De-glycosylation of the enzyme indicated that post-translational glycosylation is different in S. cerevisiae from that in L. kononenkoae. Zymogram analysis indicated that glycosylation of the protein in S. cerevisiae had a negative effect on enzyme activity. Southern-blot analysis revealed that there is only a single LKA1 gene present in the genome of L. kononenkoae.  相似文献   

15.
cDNA expression cloning is a powerful method for the rescue and identification of genes that are able to confer a readily identifiable phenotype on specific cell types. Retroviral vectors provide several advantages over DNA-mediated gene transfer for the introduction of expression libraries into eukaryotic cells since they can be used to express genes in a wide range of cell types, including those that form important experimental systems such as the hemopoietic system. We describe here a straightforward and efficient method for generating expression libraries by using a murine retroviral vector. Essentially, the method involves the directional cloning of cDNA into the retroviral vector and the generation of pools of stable ecotropic virus producing cells from this DNA. The cells so derived constitute the library, and the virus they yield is used to infect appropriate target cells for subsequent functional screening. We have demonstrated the feasibility of this procedure by constructing several large retroviral libraries (10(5) to 10(6) individual clones) and then using one of these libraries to isolate cDNAs for interleukin-3 and granulocyte-macrophage colony-stimulating factor on the basis of the ability of these factors to confer autonomous growth on the factor-dependent hemopoietic cell line FDC-P1. Moreover, the frequency at which these factor-independent clones were isolated approximated the frequency at which they were represented in the original plasmid library. These results suggest that expression cloning with retroviruses is a practical and efficient procedure and should be a valuable method for the isolation of important regulatory genes.  相似文献   

16.
A recombinant plasmid vector was constructed in which the bacterial LacZ gene was placed under the control of a Bombyx mori baculovirus early promoter. The vector proved to be active in transfected cultured dipteran and lepidopteran cells. Co-transfection carried out with this recombinant plasmid vector and a plasmid containing the hygromycin phosphotransferase gene followed by selection with the antibiotic hygromycin B, resulted in stable transformation of cultured Drosophila melanogaster Schneider 2 cells. Southern blot analysis of the host cell's genomic DNA in combination with chromosomal in situ hybridization demonstrated that multiple copies of both plasmids were integrated in the host cell's genome.  相似文献   

17.
According to a previous report, only the smaller anions, like chlorides,that readily fit into the anion binding site of alpha-amylase can cause an increased stability (relative to enzymes in aqueous solution), and the anions that are too large to fit into the binding site should have no effect on the enzyme. Even though the results on large benzoate ions are consistent with the above postulate, much larger citrate ions from sodium and potassium citrate show stabilization at moderate salt concentrations and follow an expected trend of low stability only at large salt concentrations. The citrate ions from ammonium citrate exhibit very little to almost no stabilization. In addition, low to moderate concentrations of NaCl that provide a large stability to the enzyme show almost no stability in the presence of EDTA. We put forward an inactivation model that involves a reversible dissociation of the anion bound to the protein, followed by a reversible inactivation step of calcium ion dissociation and an irreversible denaturation step of apoenzyme.  相似文献   

18.
The DNA coding for the circumsporozoite protein of Plasmodium falciparum (CSP; aa 1-412) has been placed under the control of the mycobacterial promoter derived from the gene encoding the 64-kDa antigen of Mycobacterium bovis-BCG. This expression cassette was cloned into pJRD184, an Escherichia coli multicloning site vector, together with the kanamycin resistance gene from Tn903 and the attachment site and integrase gene from the temperate mycobacteriophage FRAT1. One of the resulting plasmids, pNIV2173, introduced by electroporation into both Mycobacterium smegmatis and M. bovis-BCG, integrated at a specific site in the genome of each recipient. Recombinants expressed immunoreactive polypeptides, ranging in size from 62 to 43 kDa, at a level of about 1% of total soluble proteins. Part of this material was present in the culture medium indicating that mycobacterial recombinants were able to secrete the CSP. The M. smegmatis and M. bovis-BCG recombinants, transformed with pNIV2173 and grown in absence of antibiotic, were followed for more than 400 and 50 generations respectively. Over this time span, neither DNA rearrangement nor loss of expression was observed. Inoculation of the recombinant BCG to mice did not induce humoral response to CSP nor proliferative response to CSP Th2R CD4+ T lymphocyte epitope.  相似文献   

19.
The incidence of septic shock caused by gram-positive bacteria has risen markedly in the last few years. It is largely unclear how gram-positive bacteria (which do not contain endotoxin) cause shock and multiple organ failure. We have discovered recently that two cell wall fragments of the pathogenic gram-positive bacterium Staphylococcus aureus, lipoteichoic acid (LTA) and peptidoglycan (PepG), synergize to cause the induction of nitric oxide (NO) formation, shock, and organ injury in the rat. We report here that a specific fragment of PepG, N-acetylglucosamine-beta-[1--> 4]-N-acetylmuramyl-L-alanine-D-isoglutamine, is the moiety within the PepG polymer responsible for the synergism with LTA (or the cytokine interferon gamma) to induce NO formation in the murine macrophage cell line J774.2. However, this moiety is also present in the PepG of the nonpathogenic bacterium Bacillus subtilis. We have discovered subsequently that S. aureus LTA synergizes with PepG from either bacterium to cause enhanced NO formation, shock, and organ injury in the rat, whereas the LTA from B. subtilis does not synergize with PepG of either bacterium. Thus, we propose that the structure of LTA determines the ability of a particular bacterium to cause shock and multiple organ failure (pathogenicity), while PepG acts to amplify any response induced by LTA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号