首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
行业资讯     
<正>M40J高性能碳纤维实现中国造7月18日,从中国航天科工集团公司二院二部获悉,我国近日建成了百吨级M40J高模高强碳纤维生产线,意味着高性能碳纤维国产化时代正式到来。M40J高模高强碳纤维复合材料制品具有轻量化、高比强度、高比刚度等特点,是研制航天复杂型号产品不可或缺的关键材料。在《国务院关于印发〈中国制造2025〉的通知》中提出的高档数控机床和机器人、海洋工程等10个重点发展领域  相似文献   

2.
<正>"M40J高模高强碳纤维"国产化技术取得重大突破近日,由北京化工大学承担的北京市科委新材料专项课题"M40J高模高强碳纤维国产化制备技术研发"顺利通过专家验收。碳纤维是国防工业武器装备和国民经济的高端装备、重大基础工程、交通运输、新能源等领域的关键原材料之一,M40J高模高强碳纤维是支撑航天技术发展的重要结构材  相似文献   

3.
<正>2015年4月,由北京化工大学承担的北京市科委新材料专项课题"M40J高模高强碳纤维国产化制备技术研发"通过专家验收。M40J高模高强碳纤维是支撑航天技术发展的重要结构材料。该课题突破了国产M40J级高模高强碳纤维石墨微晶叠层厚度的调控、原丝拉伸匹配和预氧化环状结构含量控制等关键技术,形成了原丝和预氧化碳化石墨化的完整制备工艺,能满足卫星结构用碳纤维的基础指  相似文献   

4.
<正>2015年4月10日,由北京化工大学承担的北京市科委新材料专项课题"M40J高模高强碳纤维国产化制备技术研发"通过专家验收。M40J高模高强碳纤维是支撑航天技术发展的重要结构材料。该课题突破了国产M40J级高模高强碳纤维石墨微晶叠层厚度的调控、原丝牵伸匹配和预氧化环状结构含量控制等关键技术,形成了原丝和预氧化碳化石墨化的完整制备工艺,能满足卫星结构用碳  相似文献   

5.
正近日,宁波材料所在国产高强高模碳纤维关键制备技术方面取得重要进展,制备得到拉伸强度5.24 GPa、拉伸模量593 GPa的高强高模碳纤维,实现国产M60J关键制备技术的突破。高强高模碳纤维具有拉伸模量高、热膨胀系数小、  相似文献   

6.
<正>2018年3月20日,中国科学院宁波材料技术与工程研究所制备出拉伸强度5.24 GPa、拉伸模量593 GPa的高强高模碳纤维,实现了国产高强高模碳纤维M60J关键制备技术的突破。2016年1月,宁波材料所在国内率先实现国产M55J制备技术重大突破,同年9月进行了制备技术验证,并获得拉伸强度4.15 GPa、拉伸模量585 GPa的高强高模碳扦维。后续研究进一步实现了国产M55J高强高模碳纤维连续稳定生产,纤维主体性能批间批内离散系数<5%。  相似文献   

7.
正徐樑华,北化国家碳纤维工程技术研究中心主任,碳纤维及功能高分子教育部重点实验室副主任,碳纤维及复合材料研究所所长。发明出特殊工艺的T700级碳纤维制备技术及产品,支撑了我国重大型号的研制;率先实现T800级高强中模碳纤维的技术突破,填补了国内空白;研发成功M40J、M55J等高性能碳纤维国产化技术,2014年获国家科技进步二等奖。  相似文献   

8.
近日,由北京化工大学承担的北京市科委新材料专项课题"M40J高模高强碳纤维国产化制备技术研发"通过专家验收.  相似文献   

9.
<正>近期,由北京化工大学承担的北京市科委新材料专项课题"M40J级高模高强碳纤维国产化制备技术研发"顺利通过专家验收。碳纤维是国防工业武器装备和国民经济的高端装备,以及重大基础工程、交通运输、新能源等领域的关键原材料之一,M40J级高模高强碳纤维是支撑航天技术发展的重要结构材料。该课题突破了国产M40J级高模高强碳纤维石墨微晶叠层厚度的调控、原  相似文献   

10.
研究了国产高强中模碳纤维T800、高模碳纤维M50J及M55J的力学性能及其增强树脂基复合材料的界面结合强度(ILSS),并与日本东丽公司同级别碳纤维进行对比。结果表明:国产M55J碳纤维的拉伸模量为568 GPa,拉伸强度为4.50 GPa,日本东丽公司M55J的拉伸模量为561 GPa,拉伸强度为4.10 GPa,国产高模碳纤维表面石墨化程度高于日本东丽碳纤维,表面呈现更高惰性,其增强树脂基复合材料的ILSS略低于日本东丽碳纤维复合材料;将高强中模碳纤维与高模碳纤维混合后对树脂基体进行增强,混合碳纤维中随着高强中模碳纤维含量提高,其复合材料的ILSS提高幅度也随之增加。  相似文献   

11.
<正>近日,由北京化工大学承担的北京市科委新材料专项课题"M40J高模高强炭纤维国产化制备技术研发"通过专家验收。M40J高模高强炭纤维是支撑航天技术发展的重要结构材料。该课题突破了国产M40J级高模高强炭纤维石墨微晶叠层厚度的调控、原丝牵伸匹配和预氧化环状结构含量控制等关键技术,形成了原丝和预氧化炭化石墨化的完整制备工艺,能满足卫星结构用炭纤维的基础指标要求。在此基础上,课题组形成了百千克级/年国产M40J级炭纤维的小批  相似文献   

12.
主要介绍了国内外聚丙烯腈基和沥青基高模量碳纤维的研究现状及发展趋势。⑴高模量碳纤维的发展方向:1980年代,两大高模量碳纤维都朝着高强高模方向发展,以满足飞机主承力结构件高强高模并重的需要,因而促使高模量碳纤维的性能从单一高模化向高强高模化方向迈进,如东丽公司的M50J和M60J的抗拉伸强度(σ)分别为4.12 GPa和3.92 GPa,抗拉伸模量(E)分别为475 GPa和588 GPa,与M50(σ:2.45 GPa,E:490 GPa)相比均大幅度提高;1990年代率先研制出XN-70(σ:3.3 GPa,E:690 GPa)和FT-700(σ:3.3 GPa,E:700 GPa)沥青基高强高模碳纤维产品不久,美国AMOCO公司也生产出Thorne K-1000(σ:3.1 GPa,E:956 GPa)商品,满足了工业界的需求。⑵原丝的品质是提升高强高模碳纤维性能的关键:人们特别关注聚合物单体、溶剂、环境等的净化,以及聚合纺丝工艺参数的选择和调整,目的是如何能生产出低灰份杂质,细直径,高碳收率,高取向度和结晶度,毛丝少,柔韧性好,均匀稳定的优质原纤维。优质原纤维是制备高强高模的物质基础。⑶热处理制备工序、设备选型及工艺参数的调控也是提高高强高模碳纤维性能不可或缺的条件:人们在热处理过程用DSC-TG(热分析仪)、EA(元素分析仪)、FE-SEM(场发射扫描电镜)、HRTEM(高分辨透射电镜)、XES(X-射线能谱仪)、XRD(X-射线衍射仪)、Raman(拉曼光谱)、NMR(核磁共振仪)、STM(原子力显微镜)和AAS(原子吸收光谱)等先进的测试分析方法以及万能材料试验机等,研究各工序的工艺参数对产品性能和结构的影响,并详细的用图表阐述之。前人研究的成果加速了世界高强高模碳纤维性能的提升。进而提出了提高我国高强高模碳纤维的关键技术(例如研制非硅系新油剂,加强各工序的净化度和设备加工精度,强化工艺参数调控精度和加强灵活可变性,分析测试的准确度和测试方法的统一性等)。同时简介了高模量碳纤维的应用领域和前景。  相似文献   

13.
主要介绍了国内外聚丙烯腈基和沥青基高模量碳纤维的研究现状及发展趋势。⑴高模量碳纤维的发展方向:1980年代,两大高模量碳纤维都朝着高强高模方向发展,以满足飞机主承力结构件高强高模并重的需要,因而促使高模量碳纤维的性能从单一高模化向高强高模化方向迈进,如东丽公司的M50J和M60J的抗拉伸强度(σ)分别为4.12 GPa和3.92 GPa,抗拉伸模量(E)分别为475 GPa和588 GPa,与M50(σ:2.45 GPa,E:490 GPa)相比均大幅度提高;1990年代率先研制出XN-70(σ:3.3 GPa,E:690 GPa)和FT-700(σ:3.3 GPa,E:700 GPa)沥青基高强高模碳纤维产品不久,美国AMOCO公司也生产出Thorne K-1000(σ:3.1 GPa,E:956 GPa)商品,满足了工业界的需求。⑵原丝的品质是提升高强高模碳纤维性能的关键:人们特别关注聚合物单体、溶剂、环境等的净化,以及聚合纺丝工艺参数的选择和调整,目的是如何能生产出低灰份杂质,细直径,高碳收率,高取向度和结晶度,毛丝少,柔韧性好,均匀稳定的优质原纤维。优质原纤维是制备高强高模的物质基础。⑶热处理制备工序、设备选型及工艺参数的调控也是提高高强高模碳纤维性能不可或缺的条件:人们在热处理过程用DSC-TG(热分析仪)、EA(元素分析仪)、FE-SEM(场发射扫描电镜)、HRTEM(高分辨透射电镜)、XES(X-射线能谱仪)、XRD(X-射线衍射仪)、Raman(拉曼光谱)、NMR(核磁共振仪)、STM(原子力显微镜)和AAS(原子吸收光谱)等先进的测试分析方法以及万能材料试验机等,研究各工序的工艺参数对产品性能和结构的影响,并详细的用图表阐述之。前人研究的成果加速了世界高强高模碳纤维性能的提升。进而提出了提高我国高强高模碳纤维的关键技术(例如研制非硅系新油剂,加强各工序的净化度和设备加工精度,强化工艺参数调控精度和加强灵活可变性,分析测试的准确度和测试方法的统一性等)。同时简介了高模量碳纤维的应用领域和前景。  相似文献   

14.
高模量碳纤维的现状及发展(1)   总被引:2,自引:0,他引:2  
主要介绍了国内外聚丙烯腈基和沥青基高模量碳纤维的研究现状及发展趋势。⑴高模量碳纤维的发展方向:1980年代,两大高模量碳纤维都朝着高强高模方向发展,以满足飞机主承力结构件高强高模并重的需要,因而促使高模量碳纤维的性能从单一高模化向高强高模化方向迈进,如东丽公司的M50J和M60J的抗拉伸强度(σ)分别为4.12 GPa和3.92 GPa,抗拉伸模量(E)分别为475 GPa和588 GPa,与M50(σ:2.45 GPa,E:490 GPa)相比均大幅度提高;1990年代率先研制出XN-70(σ:3.3 GPa,E:690 GPa)和FT-700(σ:3.3 GPa,E:700 GPa)沥青基高强高模碳纤维产品不久,美国AMOCO公司也生产出Thorne K-1000(σ:3.1 GPa,E:956 GPa)商品,满足了工业界的需求。⑵原丝的品质是提升高强高模碳纤维性能的关键:人们特别关注聚合物单体、溶剂、环境等的净化,以及聚合纺丝工艺参数的选择和调整,目的是如何能生产出低灰份杂质,细直径,高碳收率,高取向度和结晶度,毛丝少,柔韧性好,均匀稳定的优质原纤维。优质原纤维是制备高强高模的物质基础。⑶热处理制备工序、设备选型及工艺参数的调控也是提高高强高模碳纤维性能不可或缺的条件:人们在热处理过程用DSC-TG(热分析仪)、EA(元素分析仪)、FE-SEM(场发射扫描电镜)、HRTEM(高分辨透射电镜)、XES(X-射线能谱仪)、XRD(X-射线衍射仪)、Raman(拉曼光谱)、NMR(核磁共振仪)、STM(原子力显微镜)和AAS(原子吸收光谱)等先进的测试分析方法以及万能材料试验机等,研究各工序的工艺参数对产品性能和结构的影响,并详细的用图表阐述之。前人研究的成果加速了世界高强高模碳纤维性能的提升。进而提出了提高我国高强高模碳纤维的关键技术(例如研制非硅系新油剂,加强各工序的净化度和设备加工精度,强化工艺参数调控精度和加强灵活可变性,分析测试的准确度和测试方法的统一性等)。同时简介了高模量碳纤维的应用领域和前景。  相似文献   

15.
《化学工程师》2013,(10):67-67
中国工程院院士杜善义在近日于宁波举行的2013全国碳纤维产业发展大会上指出,未来碳纤维产业技术将向高性能、低成本、高可靠性方向迈进。杜善义表示,目前在高性能碳纤维领域,继T800、T1000之后,HS、M65J等高强、高模碳纤维也得到了充分的重视和发展。T1000系列碳纤维抗拉模量为295GPa,拉伸强度达7.05GPa;M65J高强高模型纤维抗拉模量达640GPa,抗拉强度为3.62GPa。  相似文献   

16.
正2016年1月28日,中科院宁波材料所特种纤维事业部在高强高模碳纤维国产化制备技术领域取得了重大突破,制备得到的高性能碳纤维拉伸强度为4.86 GPa,拉伸模量为541 GPa,在模量达到国外同类产品M55J(540 GPa)的同时,其拉伸强度远优于M55J产品(4.02 GPa),从而打破了国外在该领域的技术垄断并填补了国内的技术空白。  相似文献   

17.
<正>一根仅有头发丝1/10粗细的高性能碳纤维,其拉伸强度竟达到4800 MPa,相当于4.8万倍的大气压。专家介绍,"高性能碳纤维国产化时代"已经到来。中国航天科工集团公司二院二部主任设计师辛玲19日接受记者采访时说,"国产M40J碳纤维工程化研制及应用"一条龙项目取得重要进展,突破了稳定化制备、碳纤维表面处理等关键技术,已有国内企业建成百吨级M40J高性能碳纤维生产线。  相似文献   

18.
正北京化工大学:国产M55J级高强高模碳纤维制备取得突破由北京化工大学国家碳纤维工程技术研究中心联合威海拓展纤维有限公司、航天材料及工艺研究所和北京卫星制造厂有限公司承接的科技部863课题"聚丙烯腈碳纤维石墨化关键技术研究"经过三年的协同攻关,攻克纤维制备关键技术、纤维性能表征技术、纤维应用技术和碳纤维高温石墨化设备设计制备技术后,完成了课题任务书要求的全部内容,碳纤维及其复合材料性能指标与进口M55J碳纤维相当。2018年5月8日,科技部高技术中心组织专家组在北京化工大学对课题进行技术验收,专家组认为该课题"自主研发并  相似文献   

19.
正2018年5月21日,科技部863课题"聚丙烯腈碳纤维石墨化关键技术研究"通过技术验收。该课题的完成标志着国产M55J级高强高模碳纤维材料实现了从工艺到装备的完全国产化制备。由北京化工大学国家碳纤维工程技术研究中心联合威海拓展纤维有限公司、航天材料及工艺研究所和北京卫星制造厂有限公司承接的"聚丙烯腈碳纤维石墨化关键技术研究"课题经过三年的协同攻关,攻克了纤维制备关键技术、纤维性能表征技术、纤维应用  相似文献   

20.
高性能复合材料弯曲疲劳性能研究   总被引:3,自引:0,他引:3  
用湿法缠绕技术制作了CF/5228预浸料,对热压罐固化的CF/5228复合材料的力学性能和弯曲疲劳性能进行了研究,并用扫描电镜、电子显微镜等对复合材料的疲劳损伤机理进行了微观表征和理论探讨。研究表明,M40J/5228复合材料比M40/5228具有更为优异的耐疲劳性能。复合材料的疲劳损伤主要有纤维断裂、基体开裂和界面剪切破坏3种表现形式,通常复合材料构件的疲劳破坏多为3种形式的综合表现。基体增韧、选用高强高模碳纤维、界面强化和铺层优化是提高复合材料构件耐疲劳性能有效手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号