共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
3.
5.
秦山二期核电厂严重事故下安全壳内氢气浓度分布及风险初步分析 总被引:1,自引:0,他引:1
采用模块化严重事故计算工具,对秦山二期核电厂大破口失水事故(LB-LOCA)、小破口失水事故(LB-LOCA)和全厂断电(SBO)诱发的严重事故序列以及安全壳内的氢气浓度分布进行了计算分析.在此基础之上,参考美国联邦法规10CFR关于氢气控制和风险分析的标准,对安全壳的氢气燃烧风险进行了初步研究.分析结果表明:大破口严重事故导致的安全壳内的平均氢气浓度接近10%,具有一定的整体性氢气燃烧风险,小破口失水和全厂断电严重事故可能不会导致此类风险,但仍然存在局部氢气燃烧的可能. 相似文献
6.
本文采用集总参数法,在先进非能动压水堆核电厂严重事故一体化分析模型基础上,考虑先进压水堆非能动安全特性以及严重事故下采取熔融物堆内滞留(IVR)措施等特性对氢气风险的影响,开展了典型严重事故下安全壳内氢气风险分析。分别选取了冷段双端剪切断裂大破口、冷段大破口叠加IRWST重力注水有效以及ADS-4误启动三个典型大破口失水事故序列,对事故进程中的氧化温度、产氢速率以及产氢质量等特性进行了研究。选取产氢量最大的冷段大破口叠加IRWST重力注水有效事故序列,分析了氢气点火器系统的消氢效果。结果表明,堆芯再淹没过程产生大量氢气,采用点火器可有效去除安全壳内的氢气,从而降低氢气燃爆风险。 相似文献
7.
8.
根据MELCOR程序对全厂断电诱发的严重事故下安全壳内各隔间的氢气浓度分布的计算结果,参考美国联邦法规关于氢气控制和风险分析的标准,分析安全壳内氢气的燃烧风险。结果表明:安全壳内平均氢气浓度不会导致整体性氢气燃烧,但存在局部燃烧的风险。通过CFD程序对氢气浓度较高的卸压箱隔间进行氢气释放和空间气体流动过程的模拟,得到更细致的卸压箱隔间内氢气浓度场分布,给出氢气聚集区域的准确位置,为采取严重事故缓解措施,设计氢复合器布置方案提供了参考依据。 相似文献
9.
严重事故下安全壳内氢气浓度场分布 总被引:1,自引:2,他引:1
利用计算流体力学程序FLuENT和GASFLOW,采用不同的湍流模型,研究了核电站严重事故下氢气在安全壳内的传输与混合过程.计算结果表明,FLUENT中的RNG k-ε模型能够较好的模拟氢气的质量扩散,动量扩散和湍流脉动特征;FLUENT中的标准k-ε模型和GASFLOW中的k-ε模型能得到工程上可以接受的计算结果;而GASFLOW中代数模型未能较好地模拟氢气的质量扩散和动量扩散,氢气的浓度场分布与其他模型的计算结果存在较大的差别.同时,本文对混合气体中的水蒸汽浓度和气体的质量流速对安全壳内氢气浓度分布的影响进行了初步研究.研究表明,破口气体的密度和流速是影响氢气浓度场的重要因素;混合气体密度越小、流速越大,则有更大的浮力和初始动量作用于气体.湍流模型的选择和对浮力驱动的湍流射流的模拟是影响严重事故下氢气在安全壳内的分布模拟结果的重要因素. 相似文献
10.
11.
压水堆核电厂发生严重事故期间,从主系统释放的蒸汽、氢气以及下封头失效后进入安全壳的堆芯熔融物均对安全壳的完整性构成威胁。以国内典型二代加压水堆为研究对象,采用MAAP程序进行安全壳响应分析。选取了两种典型的严重事故序列:热管段中破口叠加设备冷却水失效和再循环高压安注失效,堆芯因冷却不足升温熔化导致压力容器失效,熔融物与混凝土发生反应(MCCI),安全壳超压失效;冷管段大破口叠加再循环失效,安全壳内蒸汽不断聚集,发生超压失效。通过对两种事故工况的分析,证实了再循环高压安注、安全壳喷淋这两种缓解措施对保证安全壳完整性的重要作用。 相似文献
12.
13.
《核科学与工程》2015,(3)
以全球首个采用非能动设计的三代核电技术的三门核电厂为分析对象,结合电厂现行严重事故管理导则(SAMG),研究安全壳严重威胁状态下的氢气风险控制。使用一体化事故分析程序建立了电厂模型,分析了热段2英寸破口叠加专设安全设施失效导致产生超过100%活性区锆水反应产氢量的严重事故序列。在此假想工况下安全壳水冷功能失效导致事故后安全壳处于惰化环境中,而产生了安全壳超压风险和氢气风险并存的不利情况。对比分析了仅执行严重威胁导则-2(SCG-2)恢复安全壳水冷和执行SCG-2后执行SCG-3控制安全壳氢气风险的两种情况,结果表明开启/关闭安全壳水冷功能在一定程度上缓解了安全壳的超压风险和氢气风险,可为严重事故管理导则的具体实施提供技术支持。 相似文献
14.
大型干式安全壳严重事故下超压失效概率研究 总被引:2,自引:0,他引:2
核电厂安全壳是防止放射性产物释放到环境中的最后一道屏障,严重事故下安全壳压力可能超过设计压力,在超压情况下安全壳的完整性及失效概率的研究,是严重事故重点关注的内容,也是二级PSA安全壳失效和源项分析定量化的基础。结合美国SANDIA实验室安全壳完整性试验及分析的情况,对AP1000、EPR核电厂安全壳超压失效概率进行了分析,重点对国内典型二代改进型核电厂的安全壳超压失效概率进行了建模计算,相关计算方法和结果可为相关电厂实施严重事故管理和二级PSA提供参考。 相似文献
15.
16.
核电厂发生严重事故时,氢气的大体积氢燃爆可能会严重威胁安全壳的完整性.本文以福岛核电厂氢气爆炸为引题,分析了安全壳氢气产生的来源,给出了氢气的缓解措施,重点分析了AP1000的消氢方案.最后,对比了AP1000与EPR的消氢方案. 相似文献
17.
利用计算流体力学软件(CFX),初步研究了严重事故下氢气在安伞壳空间内的流动特性,分析了不同产氢速率对安全壳内氢气分布的影响。结果表明:各种氢气释放速率情况下,氢气分布的基本趋势一致;不同的产氢速率对氢气分布的影响主要体现在氢气运动到安伞壳穹顶时所形成的涡旋小同,氢气释放速率低的序列,氢气容易滞留在穹顶,然后向下慢慢扩散,分布较均匀;氢气释放速率高的序列的氢气运动方向性强,容易向下空间运动,分布的区域集中些,分层现象明显。 相似文献
18.
采用一体化严重事故分析工具,对600MWe压水堆核电厂严重事故下氢气风险及拟定的氢气控制系统进行分析。结果表明:相对于小破口失水始发事故和全厂断电始发事故工况,大破口失水始发严重事故堆芯快速熔化,在考虑100%锆 水反应产氢量的条件下,大破口失水始发事故氢气风险较大,有可能发生氢气快速燃烧;在氢气控制系统作用下,发生大破口失水始发严重事故时,安全壳内平均氢气浓度和隔间内氢气浓度低于10%,未达到氢气快速燃烧和爆炸的条件,满足美国联邦法规10CFR中关于氢气控制和风险分析的准则,认为该氢气控制系统是可行、有效的。 相似文献