首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
为高效地去除水中环境激素类污染物,采用共沉淀法合成了氧化石墨烯负载钴尖晶石铁氧体(GO/CoFe_2O_4)催化剂,催化过硫酸盐(PMS)去除水中邻苯二甲酸二丁酯(DBP).采用SEM、TEM、XPS、XRD对催化剂进行表征,研究不同条件下催化PMS去除水中DBP的效果,提出催化PMS反应机理.结果表明,GO/CoFe_2O_4为颗粒状尖晶石结构,室温下,DBP初始浓度为2μmol/L、催化剂投量为0.1 g/L、PMS浓度为20μmol/L、pH为7时,GO/CoFe_2O_4催化PMS体系对DBP的去除率可达89%,使用5次后催化效果仅降低5%.该新型复合催化剂高效、具有磁性、方便回收,具有良好的工程应用前景.  相似文献   

2.
以自制的包覆有SiO_2的CoFe_2O_4磁性颗粒为载体,采用溶胶-凝胶法在其上覆盖掺杂有Co,N,P元素的TiO_2,制备出Co,N,P/TiO_2/Si O_2/CoFe_2O_4颗粒,用振动样品磁强计(VSM)、X射线衍射仪(XRD)、X射线光电子能谱分析仪(XPS)及扫描电子显微镜(SEM)对其磁性、晶型、元素及形貌组成进行表征。将Co,N,P/TiO_2/SiO_2/CoFe_2O_4颗粒作为粒子电极及光催化剂应用于罗丹明B的光电催化降解实验。结果表明:Co,N,P/TiO_2/SiO_2/CoFe_2O_4颗粒光电催化降解Rh B的降解良好,反应40 min后Rh B的去除率达91.02%,通过磁性分离其可以有效的分离回收再利用。  相似文献   

3.
开发高效活化过一硫酸氢钾(PMS)的环保催化剂是环境催化领域一个崭新而极具挑战性的研究课题。本文采用水热法制备具有催化和磁性分离双重特性的纳米粒子CoFe_2O_4。通过XRD、XPS、VSM等对其进行表征,以染料亚甲基蓝(MB)为探针化合物,以PMS为氧化剂,考察CoFe_2O_4的催化性能。结果表明,10min内CoFe_2O_4对MB的去除率高达98%,并且经磁性分离重复使用6次以后,其催化活性基本不变,表明CoFe_2O_4具有良好的重复使用性,而且CoFe_2O_4还能够催化降解酸性橙7、弱酸性桃红、活性艳橙、碱性绿1和活性艳红等多种染料。采用抗坏血酸为自由基捕获剂,结合电子顺磁共振波谱证实了CoFe_2O_4/PMS催化体系的氧化活性种主要为SO·-4与·OH,并推测了其催化反应机理。  相似文献   

4.
随着能源与环境问题的日益突出,进行重金属的回收再利用具有重要意义。为实现重金属回收后资源化利用,作者提出利用强酸性阳离子树脂将水中重金属离子回收后,经过600℃高温无氧炭化固定,制备含不同重金属的碳基复合材料(C–X,X=Co、Fe、Mn、Ni)。作者构建了C–X复合材料催化过一硫酸盐(PMS)降解水中有机污染物体系,研究了不同催化剂、不同氧化剂、催化剂投加量等因素对反应的影响,并验证了反应体系中存在的主要自由基种类,最后采用SEM、TEM、EDS及XPS表征手段对C–Co样品微观形貌等进行了分析。研究发现不同C–X复合材料催化激活PMS性能不同。其中,C–Co复合材料催化效率最高,且目标物降解过程符合拟一级动力学模型;C–Co复合材料对PMS、PS、H_2O_2均具有一定的催化作用,由高到低依次为:C–Co/PMSC–Co/PSC–Co/H_2O_2;随着催化剂投加量增加,目标物降解速率由于催化活性位点的增加而加快;3次重复利用后,C–Co复合材料催化活性仍保持在85%以上。自由基淬灭实验证明了C–Co/PMS体系中主要存在的活性物质为·OH和·SO4–。SEM和TEM表征结果显示C–Co复合材料由片状结构和针状结构拼接组装而成,Co离散分布在材料内部和表面;EDS分析表明C–Co样品中主要元素组成为C、O、S、Co、Na;XPS表征结果发现,C–Co复合材料中Co呈现价态为正2价,且Co~(2+)是催化激活PMS的关键因素。  相似文献   

5.
《南昌水专学报》2017,(4):31-34
利用射频磁控溅射法在Pt(200)/TiO_2/SiO_2/Si衬底上沉积CoFe_2O_4/Ba_(0.8)Sr_(0.2)TiO_3异质结层状磁电复合薄膜(Ba_(0.8)Sr_(0.2)TiO_3作为底层,CoFe_2O_4作为顶层)。X射线衍射表明CoFe_2O_4/Ba_(0.8)Sr_(0.2)TiO_3异质结复合薄膜是多晶的,由钙钛矿Ba_(0.8)Sr_(0.2)TiO_3相和尖晶石Co Fe2O4相组成。场发射扫描电镜表明在CoFe_2O_4薄膜和Ba_(0.8)Sr_(0.2)TiO_3薄膜之间有明显的界面。复合薄膜的介电常数随频率的变化关系显示了介电色散。复合薄膜表现为良好的铁电性和铁磁性共存。另外,复合薄膜具有直接的磁电耦合效应,磁电电压系数αE先随着偏置磁场Hdc的增大而增大,当偏置磁场Hdc增加到5.6 k Oe,复合薄膜达到最大的磁电电压系数,其值αE=8.7 m V/(cm·Oe),然后随着偏置磁场Hdc的进一步增大,磁电电压系数αE反而减小。  相似文献   

6.
为有效去除水中内分泌干扰物,采用共沉淀法合成海泡石负载纳米Fe_3O_4催化剂,催化过二硫酸盐去除水中双酚A(BPA).通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、氮气吸脱附仪等对催化剂进行表征,考察不同温度和溶液pH对催化剂吸附性能的影响,研究催化剂和过硫酸盐投量对BPA去除效果的影响.结果表明,高比表面积的催化剂可对BPA有效吸附,平衡吸附量随着温度升高而降低,室温下可达11.6 mg/g.当催化剂投量为2 g/L、过硫酸钾(PDS)投量为4 000 mg/L、溶液pH为5时,体系可在20 min内完全降解30 mg/L的BPA.催化剂可通过外加磁场进行回收,且重复使用5次之后,60 min降解率仅下降了2.7%.机理推断认为体系内BPA的降解过程由吸附-氧化耦合反应实现,被吸附的BPA分子可在催化剂表面被生成的自由基原位降解.本研究首次将磁改性海泡石作为催化过硫酸盐的高级氧化体系催化剂使用,并认为吸附-氧化耦合式的降解途径可以有效提高自由基利用率,为去除水中痕量有机污染物的催化氧化体系设计提供了新的思路和方向.  相似文献   

7.
为研究使用过一硫酸盐(PMS)的高级氧化技术去除水体中微量有机污染物的高效可行方法,通过柠檬酸辅助溶胶-凝胶法制备纳米CuFe_2O_4材料,以其为非均相催化剂,探究CuFe_2O_4/PMS体系对诺氟沙星(NFX)的降解性能.采用X射线衍射仪、电子透射显微镜、BET手段对材料进行表征,考察煅烧温度对纳米CuFe_2O_4结构及催化性能的影响,并试验纳米CuFe_2O_4的重复使用性和稳定性.探讨纳米CuFe_2O_4投加量、PMS浓度、溶液初始pH对CuFe_2O_4/PMS体系降解NFX性能的影响,并探究该体系的氧化活性物种及降解机理.结果表明:制备纳米CuFe_2O_4的最佳煅烧温度为400℃,该温度下纳米CuFe_2O_4晶型较好,比表面积较大,且表现出较高的催化活性;在纳米CuFe_2O_4/PMS体系中,控制NFX初始质量浓度为5 mg/L,最适宜的反应条件为:纳米CuFe_2O_4投加量为0.1 g/L、PMS浓度为0.5 mmol/L、初始溶液pH为9.5,该条件下反应30 min后NFX的去除率高达99%;纳米CuFe_2O_4能有效活化PMS生成·OH和SO_4~-·,SO_4~-·是实现NFX快速降解的主要活性物种.  相似文献   

8.
利用2-氨基对苯二甲酸、醋酸钴(Co(CH_3COO)_2·4H_2O)与氧化石墨烯(GO)在微波辅助球磨作用下制备了GO/Co-MOFs,并通过IR、 XRD以及SEM对其结构进行确认.然后将所制备的材料用于亚甲基蓝的降解研究,当亚甲基蓝的浓度为15 mg/L时,分别加入100 mg和50 mg GO/Co-MOFs进行对比;并且在1%, 5%和10%的H_2O_2体系中加入50 mg GO/Co-MOFs进行对比,其结果显示亚甲基蓝的去除率随样品量和H_2O_2量的增加而增加.用第一动力学模型对实验结果进行理论分析,其相关系数(R~2)均大于0.99,证明实验与理论具有很好的一致性.  相似文献   

9.
一种仿生催化剂被用来对硫酸盐木素的结构进行改性.在本文中,固定化Co(salen)配合物被用来催化氧化硫酸盐木素(1 g硫酸盐木素,0.1 g Co(salen)或Co(salen)/IM,1 m L 30%H2O2,在60℃下反应4 h),改变对硫酸盐木素的结构和抗氧化活性.通过FT-IR和NMR技术,比较改性硫酸盐木素的结构特征.结果显示,改性后硫酸盐木素的分子量降低,多分散性减小,酚羟基的含量随着氧化程度的增加而增加.DPPH自由基的清除活性表明,由于改性增加了酚羟基含量,提高了硫酸盐木素的抗氧化活性.  相似文献   

10.
为了提高纳米Fe_3O_4的分散性,以马来酸酐改性超支化聚合物(简称超支化物)为模板,采用原位共沉淀法制备纳米Fe_3O_4/超支化物(Fe_3O_4/HB),并将Fe_3O_4/HB应用于催化双氧水降解染料。分析了铁盐比例(nFe2+∶nFe3+)、超支化物与FeCl2质量比(mHB∶mFeCl2)、吸附配位反应时间和共沉淀反应pH值对纳米Fe_3O_4粒径的影响,并对纳米Fe_3O_4/HB催化降解性能进行了测试。结果表明:纳米Fe_3O_4/HB制备的优化条件为:nFe2+∶nFe3+为1∶1.8,mHB∶mFeCl2为7.5∶1,吸附配位反应时间4h,共沉淀反应pH值为11,所得纳米Fe_3O_4平均粒径为116.3nm。Fe_3O_4/HB在中性条件下催化双氧水降解活性KN-G 60min,其降解率可达到99.8%。相比于无超支化物为模板制备的纳米Fe_3O_4,实验所得纳米Fe_3O_4粒径小,分散性和催化降解性能明显提高。  相似文献   

11.
为了提升碳纳米管对过硫酸盐的催化活性,通过化学处理分别得到表面氨基化、羟基化和羧基化改性的碳纳米管材料(CNT-NH2、CNT-OH、CNT-COOH)。采用SEM和XPS对材料结构进行了表征,并测试了其激活过硫酸盐(PDS)降解偶氮染料酸性橙(AO7)的性能。结果表明:氨基和羟基改性能够显著增强CNT的催化活性,其中,CNT-NH2在60 min内能够降解超过95%的AO7溶液(0.1 mmol/L,100 mL),反应速率远高于原始CNT以及CNT-OH和CNT-COOH,这是由于氨基改性提高了CNT表面的正电性,从而促进PDS和AO7在CNT-NH2上的吸附和反应;机理研究表明,非自由基电子转移是CNT-NH2/PDS体系的主要氧化途径,因此,该催化体系在pH值为3~11的范围内保持稳定的催化活性且对于实际水体具有较好的适应能力。  相似文献   

12.
采用透射电镜、X射线衍射和傅里叶红外光谱等技术对Fe3O4/GO,Fe3O4/MWCNTs和Fe3O4纳米组分进行了表征.基于Fe3O4/GO复合纳米组分优异的催化性能,研究了催化剂投加量、过硫酸钠浓度和pH值等对其催化性能的影响.结果表明:3种纳米组分的催化性能大小依次为:Fe3O4/GOFe3O4/MWCNTsFe3O4,其中,Fe3O4/GO复合纳米组分催化过硫酸钠降解卡马西平的性能最优.Fe3O4/GO复合纳米组分的最佳投加量和过硫酸钠的最佳浓度分别为0.4g/L和1.5mmol/L.Fe3O4/GO复合纳米组分在酸性条件下表现出最佳的催化性能,随着pH值升高,催化性能降低.Fe3O4/GO复合纳米组分对3种常用氧化剂均有较好的催化效果,且催化性能大小依次为:过硫酸氢钾H2O2过硫酸钠.  相似文献   

13.
将固定化Co(salen)和固定化Cu(salen)应用于硫酸盐木素的一锅法催化降解中,通过硫酸盐木素降解率和单酚类降解产物含量比较不同催化条件的降解能力.与单个催化剂相比,组合使用两种催化剂一锅法催化更能有效降解硫酸盐木素,降解率更高;GC-MS检测的芳香类木素降解产物含量更大,特别是香草醛.同时,对木素结构分析的结果表明,一锅法催化促进了木素侧链的氧化和断裂,苯环的开环和降解,β-O-4、β-β、β-5连接键的断裂,甲氧基的脱除.最后,采用UV-VIS和EPR分析了催化降解木素的自由基机理.结果表明,催化降解主要是通过超氧配合物作用于酚氧自由基而产生的;一锅法催化增强了超氧配合物和酚氧自由基的产生.另外,催化反应中添加亚油酸钠能够增强木素的降解.  相似文献   

14.
以铁氰化钾、三水硝酸铜为前驱体,采用共沉淀法制得中间产物,将中间产物置于马弗炉煅烧,得到CuO/Fe_3O_4磁性纳米颗粒。利用X射线衍射仪、扫描电子显微镜、X-射线光电子能谱仪对催化剂进行物相、形貌和表面元素的表征。选择罗丹明B(RhB)等多种染料为目标污染物,建立的氧化体系在10 min内可以完全降解体系中的RhB(体系条件:30℃,CuO/Fe_3O_4 0.3 g/L,PMS 0.4 mmol/L,RhB 30μmol/L,初始pH=8.0)。实验结果表明制备的CuO/Fe_3O_4可以高效地活化过一硫酸盐降解RhB。  相似文献   

15.
纳米四氧化三钴(Co3O4)催化剂对废水中有机物具有良好的催化降解活性,但纳米催化剂难从溶液中分离的缺点限制了其应用.通过将不同量的纳米Co3O4催化剂自组装在纳米四氧化三铁(Fe3O4)上,制备出了一系列不同纳米Co3O4催化剂含量的纳米Fe3O4/Co3O4,并将该系列纳米Fe3O4/Co3O4用于双氧水(H2O2)氧化降解亚甲基蓝的反应来测试其催化性能和回收再利用性能.实验结果表明,尽管纳米Co3O4催化剂的含量对于纳米Fe3O4/Co3O4的催化性能有所影响,但该系列纳米Fe3O4/Co3O4相对纯纳米Co3O4催化剂仍表现出很好的催化活性和回收再利用性.  相似文献   

16.
采用MnFe_2O_4作为光催化剂,以1,2,4—酸模拟废水为处理对象,研究MnFe_2O_4、UV、H_2O_2协同进行非均相催化氧化降解废水的效果。H_2O_2、UV、MnFe_2O_4三者单独催化降解的效率较低。当三者协同催化废水时,最佳催化条件为:UV催化时间需100 min,催化剂用量需0.002 g/mL,废水为酸性。在最佳催化条件下,废水降解率提升了20%,且能耗低于传统的Fenton处理方法,返色现象消失。  相似文献   

17.
在酸化后的活性炭上负载氧化铜制备CuO/AC催化剂,采用XRD对催化剂的组成进行表征,并在非均相体系中催化过硫酸盐降解活性艳蓝废水。通过控制变量法探索各影响因素对降解效率的影响,确定反应体系的最佳条件,并验证了反应体系中的自由基。室温时,当CuO/AC催化剂投加量为0.9g/L、K_2S_2O_8投加量为0.7g/L,在溶液初始pH的条件下处理活性艳蓝3.5h时,脱色率达到90%;升高温度有利于活性艳蓝的脱色,70℃时活性艳蓝的脱色率接近100%。结果表明,CuO/AC催化剂可活化过硫酸盐降解废水,提高其降解效率。  相似文献   

18.
以聚酰亚胺薄膜为基体,硝酸银、硝酸钴为银源和钴源,通过离子交换法制备Co_3O_4/Ag/PI复合薄膜,并对样品的结构和形貌进行了表征,通过亚甲基蓝的降解率评价复合薄膜的光催化活性.研究结果表明,通过煅烧实现了将Ag+还原成单质Ag、Co2+氧化成Co_3O_4,并均匀分散在PI表面;与Co_3O_4/PI相比,Co_3O_4/Ag/PI的光催化活性明显提高.在制备Co_3O_4/Ag/PI复合薄膜过程中,Ag+最佳含量为60%(物质的量分数),最佳煅烧温度为270℃,亚甲基蓝120 min的降解率达到94%.复合薄膜循环利用5次后,降解率仍然保持在94%左右,表现出很好的稳定性.  相似文献   

19.
基于密度泛函理论建立金属Co掺杂的铁基载氧体的微观模型,探究掺杂Co后模型表面的电子结构及反应特性的变化。首先,采用Material Studio软件中CASTEP模块构建并优化Fe_2O_3(104)的平板模型;其次,以Co原子分别替换模型表面不同配位数的Fe原子(Fe5f,Fe6f和Fe7f),构建Co在表面不同Fe原子位的掺杂模型(Co–Fe_2O_3(104));最后,计算纯净模型和掺杂模型的表面能、掺杂结合能、态密度以及掺杂位点原子的键长、键角和原子间距离等参数,考察CO在Fe_2O_3(104)和Co掺杂的Fe_2O_3(104)表面的等温吸附特性,并以CO分子为探针测试Co掺杂模型和纯净模型表面的氧化反应特性,获取反应路径、过渡态和反应活化能等信息。几何优化结果得到Co掺杂模型的稳定性顺序是:Co5f–Fe_2O_3(104) Co6f–Fe_2O_3(104) Co7f–Fe_2O_3(104),对应的结合能分别为–0.399 eV、–0.215 eV和0.487 eV,Co在Fe5f和Fe6f位的掺杂是放热过程,并且在Fe5f原子位的掺杂时放热较多,而在Fe7f原子的掺杂属于是吸热反应;Co掺杂改变了掺杂位点相邻O原子的平均键长LO-M(M代表Fe或Co),其中Co替换Fe7f后相邻O原子的LO-M增加了0.004 4 nm;掺杂Co后模型的总态密度(DOS)均向费米能级(0 eV)方向移动,在–8 eV~0 eV能量范围内离域性增强,而且Co5f–Fe_2O_3(104)模型体系靠近费米能级左边的填充态能量高于其他模型。等温吸附表明Co掺杂可以提高CO在模型表面的吸附量,并且存在吸附两种方式:–2.0 eV附近的峰为CO模型表面碱性位点的吸附峰,–0.75 eV附近的峰为CO在非碱性位点的吸附峰。CO在Co5f–Fe_2O_3(104)表面的吸附能(–0.851 eV)最大,而在Co7f–Fe_2O_3(104)表面的吸附需要外加能量(0.386 eV),CO在Co6f和Co7f掺杂位吸附的键长(LCO)比纯净模型表面的分别增加了0.000 4 nm和0.001 1 nm,表明Co掺杂表面对CO分子的活化作用较大;过渡态分析表明CO在Co掺杂表面氧化生成CO2的反应活化能均明显下降,其中CO在Co5f–Fe_2O_3(104)表面生成CO2的活化能最低,比在Fe_2O_3(104)表面的减少了0.518 eV,且相应的反应能增加了0.445 eV。研究表明,Co与Fe在其氧化物中成键结构不同,导致掺杂后模型表面的悬键增多,表面能增大,态密度向费米能级方向移动,提高了Fe_2O_3(104)表面活性,并且Co在低配位数Fe原子位的掺杂更有利于降低氧化CO的反应活化能。因此,通过掺杂金属Co提高铁基载氧体反应活性是可行的,其改性效果与掺杂活性成分的特性和掺杂方式有密切的关系。  相似文献   

20.
采用溶胶凝胶法制备了磁性催化剂铁酸钴(C_OFe_2O_4),借助于X射线衍射(XRD)、扫描电子显微镜(SEM)、BET比表面积、磁滞回线(VSM)等手段对催化剂进行表征。以甲基橙溶液模拟染料废水,开展了C_OFe_2O_4催化活化过一硫酸氢钾(PMS)降解甲基橙的实验研究。考察了催化剂用量、PMS的浓度、溶液初始p H、反应温度对甲基橙降解效率的影响,得到了反应的最佳条件。当C_OFe_2O_4浓度为0.16 g/L,PMS浓度2.3 mmol/L,溶液初始pH为3,反应温度为25℃时,甲基橙的降解效率可达89.96%。通过查阅相关文献及X射线光电能谱分析(XPS)推测了甲基橙的降解机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号