共查询到20条相似文献,搜索用时 31 毫秒
1.
跨语言知识链接是指在描述相同内容的不同语言的在线百科文章之间建立联系。跨语言知识链接可分为候选集选择和候选集排序两部分。首先,把候选集选择问题转换为跨语言信息检索问题,提出一种将标题与关键词相结合从而生成查询的方法,该方法将候选集选择的召回率大幅提高至93.8%;在候选集排序部分,提出一种融合双语主题模型及双语词向量的排序模型,实现了英文维基百科和中文百度百科之间军事领域的跨语言知识链接。实验结果表明,该模型取得了75%的准确率,显著提高了跨语言知识链接的性能,并且提出的方法不依赖于语言特性和领域特性,因此可以很容易地扩展至其他语言和其他领域的跨语言知识链接。 相似文献
2.
跨语言文本主题发现是跨语言文本挖掘领域的重要研究方向,对跨语言文本分析和组织各种文本数据具有较高的应用价值。基于Bagging和跨语言词嵌入改进LDA主题模型,提出跨语言文本主题发现方法BCL-LDA(Bagging, Cross-lingual word embedding with LDA),从多语言文本中挖掘关键信息。该方法首先将Bagging集成学习思想与LDA主题模型结合生成混合语言子主题集;然后利用跨语言词嵌入和K-means算法对混合子主题进行聚类分组;最后使用TF-IDF算法对主题词进行过滤排序。汉语-德语、汉语-法语主题发现实验表明,该方法在主题连贯性和多样性方面均表现优异,能够提取出语义更加相关且主题更加连贯多样的双语主题。 相似文献
3.
4.
为改善文本分类的效率和效果,降低计算复杂度,在分析了经典的特征选择方法后,提出加权的文本特征选择方法.该方法不仅利用数据集中文本的个数,还充分考虑到索引项的权重信息,并构造新的评估函数,改进了信息增益、期望交又熵以及文本证据权.利用KNN分类器在Reuters-21578标准数据集上进行训练和测试.实验结果表明,该方法能够选出有效特征,提高文本分类的性能. 相似文献
5.
针对跨语言文本匹配问题,提出一种基于GAN+AT-CNN的文本匹配算法。具体则通过监督式GAN文本特征映射模型和AT-CNN文本匹配模型相结合,增加样本丰富性,简化跨语言特征映射过程,从而提高映射速度和文本匹配准确度。分别将监督式GAN特征映射模型与传统的全连接神经网络(NN)、经典机器翻译模型ConvSeq2Seq, AT-CNN文本匹配模型与Bi-LSTM、ABCNN模型进行比较。结果表明,在特征映射模型的实验中,监督式GAN特征映射模型精确度平均值较其他模型高0.12%-8.46%,较无监督式GAN映射模型精确度高30.89%;训练时间则较NN长0.2 h,较ConvSeq2Seq模型短2.2 h。而在跨语言文本匹配实验中,AT-CNN文本匹配模型精确度平均值则较其他模型高1.78-7.1,但训练时间也较其他模型高127 s~1 176 s。实验证明,无论是在训练时间还是精确度上,本文使用的模型综合上都优于其他对比模型,值得应用于未来的跨语言文本匹配工作中。 相似文献
6.
针对非负矩阵分解(NMF)半监督社区发现方法随机选择先验约束,导致提升相同性能需要更多约束信息的问题,提出一种基于迭代框架的主动链接选择半监督社区发现算法——ALS_GNMF。在迭代框架下,首先,主动选择不确定性高且对社区划分指导性强的链接对作为先验信息;其次,为主动选择的链接对增加must-link约束,增强社区间连接,生成先验矩阵;同时,增加cannot-link约束,减弱社区间连接,修改邻接矩阵;最后,将先验矩阵作为正则项,加入基于NMF的最优化目标函数,并融合网络拓扑结构信息,以期用较少的先验信息,达到较高的社区发现准确性和鲁棒性。实验结果表明,ALS_GNMF算法在真实网络及人工网络上,相同的先验比例下,性能比未采用迭代框架和主动策略的NMF半监督社区发现方法有更大的提升,且在结构不清晰的网络中表现稳定。 相似文献
7.
针对汉越跨语言新闻话题发现任务中汉越平行语料稀缺,训练高质量的双语词嵌入较为困难,而且新闻文本一般较长导致双语词嵌入的方法难以很好地表征文本的问题,提出一种基于跨语言神经主题模型(CL-NTM)的汉越新闻话题发现方法,利用新闻的主题信息对新闻文本进行表征,将双语语义对齐转化为双语主题对齐任务。首先,针对汉语和越南语分别训练基于变分自编码器的神经主题模型,从而得到单语的主题抽象表征;然后,利用小规模的平行语料将双语主题映射到同一语义空间;最后,使用K-means方法对双语主题表征进行聚类,从而发现新闻事件簇的话题。实验结果表明,所提方法相较于面向中英文的隐狄利克雷分配主题改进模型(ICE-LDA)在Macro-F1值与主题一致性上分别提升了4个百分点与7个百分点,可见所提方法可有效提升新闻话题的聚类效果与话题可解释性。 相似文献
8.
9.
10.
基于双语主题模型思想分析双语文本相似性,提出基于双语LDA跨语言文本相似度计算方法。先利用双语平行语料集训练双语LDA模型,再利用该模型预测新语料集主题分布,将新语料集的双语文档映射到同一个主题向量空间,结合主题分布使用余弦相似度方法计算新语料集双语文档的相似度,使用从类别间和类别内的主题分布离散度的角度改进的主题频率-逆文档频率方法计算特征主题权重。实验表明,改进后的权重计算对于基于双语LDA相似度算法的召回率有较大提高,算法对类别不受限且有较好的可靠性。 相似文献
11.
随着微博、照片分享等社会化媒体的快速发展,每天产生了大量的短文本内容如评论、微博等,对其进行深入挖掘有重大的应用价值和学术意义。该文选取微博作为例子,详细阐述我们提出的方法。微博信息流因其简短和实时的特性而具有非常大的价值,已经成为市场营销,股票预测、舆情监控等应用的重要信息源。尽管如此,微博内容特征极其稀疏、上下文语境提取困难,使得微博信息的挖掘面临着很大挑战。因此,我们提出一种基于Wikipedia的微博语义概念扩展方法,通过自动识别那些与微博信息语义相关的Wikipedia概念来丰富它的内容特征,从而有效提高微博信息数据挖掘和分析的效果。该文工作首先通过可链接性剪枝、概念关联和消歧,发现微博信息中重要的n-gram所对应的Wikipedia概念;其次,采用基于概念-文档关联矩阵的NMF分解(非负矩阵分解)方法获取Wikipedia概念之间的语义近邻,为微博信息扩展相关的语义概念。基于TREC 2011的微博数据集和Wikipedia 2011数据集进行实验,与已有两个相关研究工作比较,该文提出的方法取得了较好的效果。 相似文献
12.
Julian SzymańSki 《控制论与系统》2013,44(2):180-199
In our work, we review and empirically evaluate five different raw methods of text representation that allow automatic processing of Wikipedia articles. The main contribution of the article—evaluation of approaches to text representation for machine learning tasks—indicates that the text representation is fundamental for achieving good categorization results. The analysis of the representation methods creates a baseline that cannot be compensated for even by sophisticated machine learning algorithms. It confirms the thesis that proper data representation is a prerequisite for achieving high-quality results of data analysis. Evaluation of the text representations was performed within the Wikipedia repository by examination of classification parameters observed during automatic reconstruction of human-made categories. For that purpose, we use a classifier based on a support vector machines method, extended with multilabel and multiclass functionalities. During classifier construction we observed parameters such as learning time, representation size, and classification quality that allow us to draw conclusions about text representations. For the experiments presented in the article, we use data sets created from Wikipedia dumps. We describe our software, called Matrix’u, which allows a user to build computational representations of Wikipedia articles. The software is the second contribution of our research, because it is a universal tool for converting Wikipedia from a human-readable form to a form that can be processed by a machine. Results generated using Matrix’u can be used in a wide range of applications that involve usage of Wikipedia data. 相似文献
13.
文本表示是自然语言处理中的基础任务,通常的文本表示模型都是基于训练数据充分的情况下进行。而在训练数据缺乏时,无法完成自然语言处理任务。提出了一种基于维基百科的文本表示方法,引入维基百科词条之间的关系,通过PageRank传播模型,能够一定程度上解决训练数据缺乏时文本表示的问题。通过实验论证了基于维基百科的文本表示能够增强分类方法的准确率、召回率和F1-测度。 相似文献
14.
15.
双语翻译对在跨语言信息检索、机器翻译等领域有着重要的用途,尤其是专有名词、新词、俚语和术语等的翻译是影响其系统性能的关键因素,但是这些翻译对很难从现有的词典中获得。该文针对维基百科的领域覆盖率和结构特征,提出了一种从维基百科中自动获取高质量中英文翻译对的模板挖掘方法,不但能有效地挖掘出常见的模板,而且能够发现人工不容易察觉的复杂模板。主要方法包括三步: 1)从语言工具栏中直接抽取翻译对,作为进一步挖掘的启发知识;2)在维基百科页面中采用PAT-Array结构挖掘中英翻译对模板;3)利用挖掘的模板在页面中自动挖掘其他中英文翻译对,并进行模板评估。实验结果表明,模板发现翻译对的正确率达90.4%。 相似文献
16.
基于链接描述文本及其上下文的Web信息检索 总被引:20,自引:0,他引:20
文档之间的超链接结构是Web信息检索和传统信息检索的最大区别之一,由此产生了基于超链接结构的检索技术。描述了链接描述文档的概念,并在此基础上研究链接文本(anchor text)及其上下文信息在检索中的作用。通过使用超过169万篇网页的大规模真实数据集以及TREC 2001提供的相关文档及评价方法进行测试,得到如下结论:首先,链接描述文档对网页主题的概括有高度的精确性,但是对网页内容的描述有极大的不完全性;其次,与传统检索方法相比,使用链接文本在已知网页定位的任务上能够使系统性能提高96%,但是链接文本及其上下文信息无法在未知信息查询任务上改善检索性能;最后,把基于链接描述文本的方法与传统方法相结合,能够在检索性能上提高近16%。 相似文献
17.
大量的网络评论已经成为挖掘用户意见、改进产品质量的重要信息来源,而特征抽取作为后续分析的基础,直接影响到最终意见挖掘结果的准确性. 本文提出了一种PMI-Bootstrapping算法,并结合了语言规则实现中文网络评论的产品特征抽取. 首先利用语言规则产生候选特征集,计算每个候选特征与初始给定种子集的加权平均互信息,将满足阈值的候选特征添加到种子集中,如此循环迭代,直到种子集合收敛,输出排队后的种子集合作为抽取结果. 实验证明,该算法取得良好的准确率和召回率. 相似文献
18.
19.
提出了一种基于锚文本和改进C4.5决策树算法的主题爬行方法:基于锚文本词项集训练决策树,然后基于决策树模型来计算网页的主题相关性和待爬行URL的优先级顺序。最后,应用该方法在四所大学网站网页数据集上针对“学术报告”主题进行了主题爬行实验,并与两种标准的网络爬虫进行了性能对比,实验结果验证了该方法的有效性。 相似文献
20.
基于实例的机器翻译(example-based machine translation,简称EBMT)使用预处理过的双语例句作为主要翻译资源,通过编辑与待翻译句子匹配的翻译实例来生成译文.在EBMT系统中,翻译实例选择及译文选择对系统性能影响较大.提出利用统计搭配模型来增强EBMT系统中翻译实例选择及译文选择的能力,提高译文质量.首先,使用单语统计词对齐从单语语料中训练统计搭配模型.然后,利用该模型从3个方面提高EBMT的性能:(1)利用统计搭配模型估计待翻译句子与翻译实例之间的匹配度,从而增强系统的翻译实例选择能力;(2)通过引入候选译文与上下文之间搭配强度的估计来提高译文选择能力;(3)使用统计搭配模型检测翻译实例中被替换词的搭配词,同时根据新的替换词及上下文对搭配词进行矫正,进一步提高EBMT系统的译文质量.为了验证所提出的方法,在基于词的EBMT系统上评价了英汉翻译的译文质量.与基线系统相比,所提出的方法使译文的BLEU得分提高了4.73~6.48个百分点.在半结构化的EBMT系统上进一步检验了基于统计搭配模型的译文选择方法,从实验结果来看,该方法使译文的BLEU得分提高了1.82个百分点.同时,人工评价结果显示,改进后的半结构化EBMT系统的译文能够表达原文的大部分信息,并且具有较高的流利度. 相似文献