首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
针对存在干扰的飞翼布局无人机纵向着陆控制问题,提出一种基于super twisting滑模干扰观测器与跟踪微分器的反步L_2增益鲁棒控制方案.为解决反步控制虚拟控制量求导复杂的问题,设计了跟踪微分器对虚拟控制量进行求导,同时综合采用super twisting滑模干扰观测器和L_2增益鲁棒项增强了控制系统的鲁棒性.仿真结果表明,无人机高度、空速都跟踪上控制指令,垂直接地速度在允许的范围内,与传统的PID着陆控制方案相比具有更好的着陆控制性能.  相似文献   

2.
针对飞翼布局无人机受扰姿态控制问题,提出一种二阶滑模姿态跟踪鲁棒控制方案。基于时标分离特性,将飞翼布局无人机姿态控制系统分为内外回路进行设计。外回路采用自适应二阶终端滑模控制器,利用自适应算法调节切换增益抑制复合干扰对系统性能的影响,同时二阶终端滑模将不连续的符号函数加在控制量的导数上,通过积分得到连续的滑模控制律,从而有效地消除了常规滑模控制器的抖振。内回路采用基于自适应super twisting滑模观测器的积分滑模控制器,设计自适应super twisting滑模观测器以实现对内回路复合干扰的估计和补偿。最后通过控制分配环节将控制力矩分配到舵面上,仿真结果验证了所提方案的有效性。  相似文献   

3.
对于风场扰动中的飞翼布局无人机,需要考虑模型参数不确定和外界干扰对姿态控制的影响,以及解决操纵面冗余、附加力效应显著、多轴操纵耦合、舵效非线性等特殊问题。采用基于扩张状态观测器的terminal滑模和多目标非线性控制分配对姿态角的跟踪控制问题进行了研究,将扩张状态观测器与基于饱和函数的terminal滑模控制器相结合,在名义滑模控制律的基础上采用扩张状态观测器实现对干扰的估计和补偿,有效提高了系统的鲁棒性和控制精度,并且充分利用冗余操纵面,根据飞行任务需求,实现对多种目标综合权衡的非线性控制分配。  相似文献   

4.
针对四旋翼无人机姿态控制中非线性、强耦合以及对扰动敏感等控制问题,设计了一种基于自抗扰的动态面控制器。与反步控制相比,动态面控制器的设计过程更简单,且利用一阶滤波器来计算虚拟控制信号的导数项,避免了反步控制中的出现的微分膨胀问题。将动态面控制与自抗扰控制相结合,首先利用跟踪微分器可直接获取设定值的微分信号,简化了控制器的设计过程,然后利用扩张状态观测器将系统总扰动实时的补偿到控制器中,提高了系统的鲁棒性和抗干扰能力,并通过Lyapunov直接法对闭环系统进行了稳定性分析。仿真结果表明:本文设计的控制器可保证四旋翼无人机在有外界干扰的情况下能快速、准确地跟踪设定位置。  相似文献   

5.
以串联式混合动力汽车BJUT-SHEV为研究对象,针对起停工况下模型参数摄动和外部干扰等不确定性因素对控制效果的影响,提出一种基于非线性干扰观测器理论的自适应滑模控制方法.通过引入非线性干扰观测器对系统中存在的不确定进行估计,利用估计结果补偿滑模控制器输出,以提高滑模控制器的控制性能及鲁棒性;设计自适应律对切换增益自适应调节,以削弱滑模控制器的输出抖振.基于Lyapunov理论证明了该方法的稳定性,最后通过仿真实验进一步验证了该方法的可行性及有效性.  相似文献   

6.
水下机器人-机械臂系统(UVMS)在水下作业过程中存在自身结构不确定性干扰、系统动力学耦合干扰以及海流干扰的问题,这对水下机器人的运动控制提出了更高的要求。本文以某欠驱动水下机器人系统作为研究对象,提出了一种误差受限的抗干扰控制方法。基于视线法和设定性能函数得到UVMS的误差动力学模型,再基于此模型设计水下机器人(AUV)抗扰控制器。通过牛顿-欧拉方程估算机械臂对于AUV本体的耦合干扰并进行实时补偿。采用神经网络控制补偿AUV系统的结构性不确定性,并利用自适应控制来补偿神经网络估计误差、非结构性不确定性误差和机械臂耦合干扰的补偿误差。通过机械臂静止和定点作业两组工况下的仿真实验发现,运动控制任务符合设定预期时间和跟踪精度,同时也验证了分离式UVMS运动控制方案在水下定点作业任务中的可行性和有效性。本文方法具有很强的鲁棒性,且能够通过此抗扰控制方法来抑制这些不确定性干扰的影响。  相似文献   

7.
小型航天器浸入与不变自适应反步姿态跟踪   总被引:1,自引:0,他引:1  
针对具有惯性张量不确定性、外干扰及饱和限制的小型航天器非线性姿态跟踪问题,将反步法和系统浸入与流形不变理论相结合,提出了分块自适应约束控制结构.航天器姿态模型由修正罗德里格参数进行全局非奇异描述.在设计反步控制器时,引入指令滤波器和修正跟踪误差信号以施加系统状态和执行器的饱和限制,同时较容易地获得虚拟控制导数.为提高反步控制器的鲁棒性和性能,利用基于不变流形的非线性观测器对时变的系统“总干扰”进行在线估计补偿.由于不变流形方法使得估计误差具有指定的一致稳定动态,因而该分块自适应控制器比传统的自适应反步控制器更容易调节,且性能不受未知的估计律动态的影响.李亚普诺夫直接方法证明了估计误差有界性和闭环系统输入状态稳定.数值仿真表明,与传统方法相比,所提出的控制器结构具有更高的姿态跟踪性能和干扰估计精度.  相似文献   

8.
针对机电作动系统在低速阶段摩擦非线性明显且同时存在其他干扰,易导致系统跟踪精度、稳定性下降这一问题,设计基于非线性观测器摩擦补偿的自适应鲁棒控制器. 针对摩擦非线性,利用LuGre摩擦模型描述系统的摩擦现象,提出非线性观测器对模型的内部摩擦状态进行观测. 针对系统摩擦系数、转动惯量及其他不确定性参数,设计参数自适应律进行估计. 利用前馈补偿的方法,对摩擦非线性和参数不确定性进行补偿,设计鲁棒项克服系统的其他扰动. 利用Lyapunov稳定性定理证明了提出的控制器在存在扰动的情况下可以实现系统的有界稳定性. 实验结果表明,提出的控制器具有较高的控制精度与较强的鲁棒性,跟踪精度较传统的PID控制器提高了一个数量级.  相似文献   

9.
飞翼无人机非线性控制设计方法   总被引:1,自引:0,他引:1  
为实现飞翼无人机的机动飞行,以带有流体矢量方向舵的飞翼无人机为设计对象,采用非线性设计方法设计了控制器,并进行飞行验证.针对飞翼无人机的机动飞行控制存在各种耦合和扰动的特点,设计内环线性化解耦以消除已知不利的耦合项,外环反步跟踪方法进行航迹跟踪的控制律结构,证明了该控制结构的稳定性.同传统反步控制方法相比,该控制器增加了内环解耦结构,并在控制结构中保留气动阻尼项,使得线性化后的系统为弱非线性系统.该结构不仅可以降低外环控制器设计的保守性,而且便于工程实现.仿真和飞行试验表明,该控制方案是有效的.  相似文献   

10.
为了提高四旋翼无人机姿态控制精度及抗干扰性能,将干扰观测器与扩张状态观测器相结合,提出了一种基于双观测器的滑模抗干扰控制方法.首先,对于部分已知信息的干扰用外生系统模型描述,并用干扰观测器进行估计;然后针对复杂的非线性可微干扰采用扩张状态观测器进行估计;接着设计滑模控制律来补偿双观测器估计的干扰,进而实现姿态控制;最后利用李雅普诺夫理论证明了系统的稳定性.仿真结果表明,该方法相较于传统的PID控制具有更高的跟踪精度和良好的抗干扰能力.  相似文献   

11.
利用自解耦控制方法(SDC)研究三容系统的液位控制。首先使用线性扩张状态观测器对三容系统中的耦合、非线性部分和扰动进行估计及补偿,进而通过设计合适的控制律来实现系统中每个子系统的自解耦。仿真结果表明,与传统的自抗扰控制相比,自解耦控制方法对期望的液位值具有良好的随动跟踪性能、较快的响应速度、鲁棒性更好。  相似文献   

12.
针对光刻机工件台长行程直线电机宏动和平面电机高精密微动的耦合运动特点,提出一种宏动跟踪微动的变增益非线性复合控制方法,实现系统高动态纳米级精度的跟踪定位。宏动长行程直线电机采用零相位跟踪前馈控制和双环控制,实现系统无静差跟踪加速度指令;利用扩张状态观测器观测宏动系统的动态变化,补偿系统中的耦合推力和其他扰动;微动平面电机采用变增益非线性控制,根据系统误差幅值的大小,动态的改变控制器增益,以大增益抑制系统加减速时的低频大幅值误差,以小增益避免系统匀速运动时高频噪声的引入。实现系统稳定时间小于30 ms,跟踪误差小于20 nm的跟踪,实验结果表明:该方法可改善系统的动态性能和抗干扰能力,减小系统稳定时间,提高系统的跟踪精度。  相似文献   

13.
针对双连杆机械臂非线性耦合系统,对2个关节分别设计了自抗扰控制器,运用自抗扰控制技术中的扩张状态观测器对系统进行动态补偿线性化,从而实现了2个关节的解耦控制.通过适当选择自抗扰控制器的控制参数,实现了机械臂的精确轨迹跟踪控制,仿真结果证明了自抗扰控制器的有效性和较强的鲁棒性,为机械臂的轨迹跟踪控制提出了新的思路.  相似文献   

14.
为研究存在复合干扰的非常规布局菱形翼长航时侦察无人机姿态控制问题,针对系统存在强耦合、非线性、多输入多输出等特点,结合滑模变结构控制理论、分数阶微积分理论、自适应控制理论、新型基于非线性fal函数的快速趋近律及扩张状态干扰观测器,提出了一种包含干扰观测器的自适应分数阶微积分滑模控制方法.首先,为降低控制器的超调现象,结合分数阶微积分理论,利用分数阶微积分算子信息记忆和遗忘的特性,设计了分数阶微积分滑模面,以柔化控制器的输出,使得控制器超调现象得到良好的控制. 其次,为改善传统趋近律收敛时间长,抖震严重等弱点,利用fal函数“小误差大增益,大误差小增益”良好的特性,将非线性fal函数引入到趋近律的设计中,提出了一种可以快速收敛的新型趋近律,平滑无抖震地加快了系统收敛速度. 最后,由于建模误差和外部干扰的存在,使用扩张状态干扰观测器观测出等效干扰并在控制器中引入等效的补偿. 数值仿真结果表明,所提控制方法具有很强的鲁棒性,达到了理想的控制效果.  相似文献   

15.
机器人系统含有不同类型的不确定性因素,这些因素的存在可能会影响系统的控制精度,甚至引起系统不稳定。针对具有外部干扰、内部动力学参数不确定性以及未知死区特性的一类不确定性机器人系统,提出了一种基于干扰观测器的自适应控制器。首先建立具有外部干扰的机器人系统非线性数学模型,并对模型中内部动力学参数不确定性和未知死区特性进行了分析。采用非线性干扰观测器对系统所受到的外部干扰进行估计和补偿,在干扰观测器的基础上设计自适应控制器用来处理内部动力学参数的不确定性以及未知的死区特性。最后采用李雅谱诺夫函数法从理论上证明了系统的稳定性和位置跟踪误差的收敛性,并采用数值仿真验证了所设计方法的有效性。  相似文献   

16.
为了降低动力翼伞系统的非线性特性和风场干扰对轨迹跟踪控制的影响,设计基于自抗扰控制技术的轨迹跟踪控制器.根据动力翼伞系统的特性,将动力翼伞系统的轨迹跟踪控制分为水平轨迹控制通道和垂直高度控制通道,分别设计线性扩张状态观测器(LESO)对系统非线性扰动和外部干扰进行估计和补偿.采用零阶保持器法对线性扩张状态观测器进行离散化,提高线性扩张状态观测器对系统状态的估计效果.仿真结果表明,动力翼伞系统的线性自抗扰轨迹跟踪控制器能够克服风场的影响,达到水平方向和竖直方向的轨迹跟踪控制要求,控制效果优于广义预测控制器.  相似文献   

17.
针对高速无人驾驶车辆运动控制过程中轨迹跟踪精度和稳定性难以同时保障的问题,提出综合前馈-反馈及自抗扰控制(ADRC)补偿相结合的横向控制算法. 通过车速和道路曲率信息计算前馈稳态前轮转向角,将质心侧偏角引入航向偏差,以车辆航向角偏差和侧向偏差作为参考量进行反馈控制,通过前馈-反馈控制提升瞬态轨迹跟踪性能. 设计自抗扰控制器,通过扩张状态观测器对未建模动态和内外界干扰进行估计,通过将后轮侧偏角控制在参考值附近来补偿前轮转角,提升无人驾驶车辆的转向稳定性和控制器的鲁棒性. 不同工况下的仿真结果表明,利用该方法可以保证高速无人驾驶车辆稳定地跟踪期望路径行驶,轨迹跟踪偏差较小,对车辆参数变化和外界干扰具有较强的鲁棒性.  相似文献   

18.
为提升建模不确定性下的超机动飞行控制性能,提出一种基于自抗扰反演的超机动非线性控制律设计方法.建立了具有大迎角特性的飞机六自由度非线性模型,通过由前至后递推的设计思想,逐步迭代设计Lypaunov函数与虚拟的控制输入量,实现强非线性飞机对象的控制.对建模不确定性给超机动控制性能带来的影响,将自抗扰控制方法中的扩张状态观测器与反演控制方法相结合,利用扩张状态观测器不依赖系统模型的特点,实时观测并补偿建模误差对飞行控制的影响.超机动数字仿真结果表明:所设计的超机动非线性控制律能够实现大迎角控制,在40%建模误差的影响下,迎角响应仍平滑稳定.基于自抗扰反演的超机动非线性控制方法具有优异的大迎角机动飞行控制性能.  相似文献   

19.
飞翼布局无人机滑跑纠偏控制   总被引:1,自引:0,他引:1  
针对滑跑纠偏控制律对良好鲁棒性的要求,以及飞翼布局无人机地面滑跑六自由度模型非线性、多变量的特点,提出了基于自抗扰控制理论的无人机非线性滑跑纠偏控制律;由于采用了前轮转向、阻力方向舵和主轮差动刹车联合纠偏,针对控制执行机构纠偏效率在滑跑过程中变化较大,以及阻力方向舵和刹车机构兼具减速和纠偏功能的特点,提出采用加权伪逆法对偏航力矩及阻力控制指令进行动态控制分配。结果表明,自抗扰滑跑纠偏控制律能够能有效观测并补偿跑道环境影响造成的强烈干扰及侧风干扰,加权伪逆法能够对偏航力矩和阻力指令进行动态分配,并使各执行机构使用量处于正常范围以内。  相似文献   

20.
Hamilton系统的鲁棒自适应控制及在航天器中的应用   总被引:1,自引:1,他引:0  
针对带有参数不确定性和受外干扰影响的多输入多输出Hamilton系统的跟踪控制问题,提出一种基于动态逆和扩张状态观测器的鲁棒自适应控制方法,保证系统具有良好的控制性能和较强的鲁棒性。首先,针对标称模型设计了基于动态逆方法的控制器,然后采用基于投影算子的自适应律和扩张状态观测器,分别对系统中的不确定参数和外干扰进行估计和补偿,同时,采取动态补偿器降低执行器饱和对控制性能的影响。最后,将控制方案应用于航天器姿态控制系统中,仿真实验结果表明了方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号