共查询到20条相似文献,搜索用时 0 毫秒
1.
《沈阳航空航天大学学报》2014,(1)
使用成熟的旋转机械振动信号频谱分析方法,对采集到的多台航空发动机试车振动信号进行分析,找出能反应出发动机转子不对中、转子不平衡和转静件碰磨3种故障频谱特征的振动信号。再使用小波包将信号分解为不同的频段,之后分别计算能反应出故障信息的特征频段的能量,将它们组成用来区分上述3种故障的特征向量,为以后的航空发动机故障的模式识别做准备。 相似文献
2.
研究了传统包络谱方法在滚动轴承故障诊断中不能准确提取故障特征的问题,提出了一种基于能量和包络谱相结合的时间-小波能量包络谱分析法。用两种方法对滚动轴承各部位采集到的数据进行了分析对比,结果表明,时间-小波能量包络谱分析法比传统包络谱方法能更好和准确地提取出滚动轴承故障的特征频率。 相似文献
3.
在滚轴故障诊断中,故障通常表现为振动信号的突变,因此检测信号奇异点意义重大。文章介绍了小波变换理论和小波变换奇异性检测原理,研究了奇异性检测方法在滚动轴承故障诊断问题中的应用。采用小波门限消噪法处理繁杂的滚轴振动信号,对消噪后的振动信号采用小波变换模极大值奇异性检测方法进行多尺度小波分析,得到故障点的位置。仿真结果表明,该方法下振动信号奇异程度以及奇异点的位置明显。 相似文献
4.
基于小波包分析的滚动轴承故障诊断 总被引:2,自引:0,他引:2
应用小波包分析方法构造滚动轴承故障信号的能量特征向量,再以此作为神经网络的输入,对滚动轴承故障进行分类,实践表明,能量特征向量较显著的表达了故障,有较好的诊断效果. 相似文献
5.
为了实现低压串联故障电弧的有效诊断,基于ULI699标准搭建了交流电压为220V、频率为50Hz的串联故障电弧实验平台,并对不同负载回路正常工作电流以及串联故障电弧电流进行数据采集,提出基于小波包能量熵的低压串联故障电弧诊断方法.通过对电流信号进行4层小波包分解,提取小波包能量熵作为特征向量描述故障电弧电流信号在不同频段的能量分布.采用主元分析(PCA)法提取特征向量的主元作为BP神经网络的输入,实现样本最优压缩以简化神经网络结构.仿真结果表明,该方法故障诊断准确率较高,能够有效地识别串联故障电弧. 相似文献
6.
针对滚动轴承复合故障信号中故障特征难以分离的问题,提出了基于双树复小波包和自回归(autoregressive,AR)谱的故障诊断方法.首先,利用双树复小波包变换将复杂的、非平稳的复合故障振动信号分解为若干个不同频带的分量;然后,对包含故障特征的分量进行希尔伯特包络;最后,对包络信号求其AR功率谱,由此实现对复合故障特征信息的分离和故障识别.实验结果表明:该方法可有效地分离轴承复合故障的特征频率,验证了该方法的可行性和有效性. 相似文献
7.
《青岛大学学报(工程技术版)》2017,(2)
为提高诊断滚动轴承故障的效率和准确率,本文将小波包变换、BP神经网络和遗传算法三者相结合,提出了一种基于小波包和GABP神经网络的故障诊断模型。由小波包的分解与重构在滚动轴承故障原始信号中提取有效的故障特征向量,并利用遗传算法优化BP神经网络,然后训练和诊断滚动轴承信号的故障类型。同时,运用Matlab软件把采集的数据进行仿真分析。仿真结果表明,相对于传统BP神经网络,利用遗传算法优化的神经网络对故障的诊断正确率更高,并且收敛速度较快,说明由遗传算法优化的BP神经网络在故障诊断方面具有较好的效果,而且遗传算法的引入使轴承故障诊断的适应度和准确率更高。该研究为滚动轴承的故障诊断提供了理论基础。 相似文献
8.
针对滚动轴承早期故障微弱特征难以提取的问题,提出了一种基于Hermitian小波时间-能量谱的滚动轴承故障诊断方法.该方法针对轴承故障振动信号具有奇异性的特点,首先利用Hermitian小波对原始信号进行连续小波变换;再根据小波变换的结果求取信号能量在时间轴上的分布情况,利用谱峭度指标作为选择最佳累积尺度的标准,得到时间-小波能量分布;最后对时间-小波能量分布进行谱分析得到时间-小波能量谱以提取故障特征.利用时间-小波能量谱对仿真信号和轴承外圈及内圈点蚀故障信号进行分析.结果表明:该方法可有效地提取出强噪声环境下微弱故障的特征成分,并与普通的时间-小波能量谱作对比,特征提取效果更为明显,非常适用于滚动轴承早期故障诊断. 相似文献
9.
滚动轴承损伤类故障的分析诊断基础是提取故障信息。利用小波包分析对机床主轴滚动轴承振动信号进行分解,求出各频段的能量,提取了轴承故障的特征频率并对故障进行定位,表明了小波包分析方法在滚动轴承故障诊断的有效性和优良性。 相似文献
10.
针对滚动轴承的单一故障进行诊断,提出了将小波VMD-Teager能量算子相结合和小波CEEMD-Teager能量算子相结合的诊断方法。对于滚动轴承的故障信号首先是进行小波降噪,使用VMD分解得到IMF分量,利用峭度和相关系数的大小选择合适的IMF分量,进行重构。通过对重构的IMF进行Teager能量算子包络解调处理,最后可以得到不同故障程度的轴承故障的特征频率。对比VMD处理和CEEMD处理得到的故障信号包络图,利用实验数据验证表明, VMD处理能更有效提取滚动轴承的单一故障微弱特征。 相似文献
11.
风力发电是全球未来最重要的代替能源,由于其风电机组工作在恶劣的条件下,易造成风力发电机局部出现故障.风力发电机组的滚动轴承故障振动信号呈现非线性和非平稳特点,大量背景噪声污染导致故障特征难以有效识别,提出了多小波和谱峭度相结合的风力发电机滚动轴承故障特征提取方法.首先对振动信号进行多小波降噪,计算其峭度值,评判风机轴承是否产生故障;其次依据快速峭度图算法的自适应选择性获得最优的滤波器参数,滤波后对其进行平方包络分析;最后提取高频共振信号中包含的低频信息,判断风机的故障类型.通过仿真实验结果表明,对于风机轴承微弱的故障诊断,该方法能排除强烈的噪声干扰,保留易丢失的有用信号,明显提高信噪比,精确识别出故障特征频段,有效地的进行故障诊断. 相似文献
12.
基于小波包和KPCA的时频域故障检测方法 总被引:1,自引:0,他引:1
针对故障检测技术中存在的非线性和信息遗漏问题,在深入分析核主元分析法的基础上,提出了一种新的基于小波包和核主元分析法(KPCA)的时频域故障检测方法.利用小波包对原始信号进行预处理,提取包含时域和频域特征参数构成的特征向量,应用KPCA进行故障检测,同时对液压泵也进行了故障检测.试验结果表明,时域和频域特征参数构成的特征向量很好地反映了故障的特征,与PCA相比,KPCA的主元数目可选择范围宽,该方法对液压泵故障检测有良好的效果. 相似文献
13.
《长春工业大学学报(自然科学版)》2016,(5)
DSP作为信号处理器,采用小波包算法对电机转子断条数据进行分析处理,提取出故障特征。分别对基于DSP和基于Matlab条件下实现的小波包算法进行对比实验。 相似文献
14.
《沈阳航空航天大学学报》2014,(4)
针对滚动轴承故障诊断问题开展研究,设计了基于谐波小波包和支持向量机(SVM)的新型诊断方法。与传统的时频特征提取方法相比,谐波小波包具有盒状频谱和无限细分的优势。首先对滚动轴承的振动数据进行谐波小波包分解,利用各频段的小波分解系数计算特征能量,归一化之后作为特征向量,为设计的多类SVM模型提供训练样本和测试样本。利用SVM的非线性映射能力,将三个二分类器相组合设计了基于二叉树的多类SVM模型,实现了对滚动轴承的故障诊断。最后,利用Case Western Reserve University电气工程实验室的滚动轴承试验台的振动数据对设计的诊断方法进行了验证。结果表明,设计的诊断方法比传统的方法具有更高的准确率。 相似文献
15.
基于EMD模态能量分析的滚动轴承故障特征提取 总被引:1,自引:1,他引:1
针对滚动轴承振动信号具有非平稳性的特点,提出一种提取相同工况条件下正常信号与故障信号各固有模态函数能量比构建特征向量的特征提取方法。由于EMD分解后各模态分量存在模态混叠现象,导致分解结果具有不确定性,因此传统的能量特征提取方法在滚动轴承故障诊断中的故障识别率较低。通过引入相同工况条件下的正常信号,将各模态分量的能量特点转化为相对于正常信号的能量特征。仿真实验表明,本文所提方法能够有效地提取滚动轴承的故障特征,进而实现其故障诊断。 相似文献
16.
当齿轮发生点蚀故障时,振动信号中齿轮固有频率的频带能量有较大提升.根据这一特点,提出一种利用小波包分析和频带能量分解对点蚀故障进行识别的方法,并通过实验验证其有效性. 相似文献
17.
对电机故障信号利用小波包算法进行分解,应用小波包频率分辨率高的特性,提取出包含电机故障特征频率分量的局部频段进行分析,通过对小波包分解系数与正常无故障时的分解系数相比较,判断有无故障的发生,并在Maflab环境下进行了仿真实验. 相似文献
18.
对电机故障信号利用小波包算法进行分解,应用小波包频率分辨率高的特性,提取出包含电机故障特征频率分量的局部频段进行分析,通过对小波包分解系数与正常无故障时的分解系数相比较,判断有无故障的发生,并在Matlab环境下进行了仿真实验. 相似文献
19.
基于形态小波和S变换的滚动轴承故障特征提取 总被引:1,自引:0,他引:1
针对传统小波在强背景噪声中提取冲击故障特征的不足,提出基于极大提升形态小波(MLMW)分析和S变换的滚动轴承故障特征提取方法.先利用MLMW变换将信号分解到不同形态尺度上,各尺度信号上保留着信号局部极值形态特征,对细节信号进行软阈值降噪处理,再从重构信号的具有良好时频聚焦性的S变换谱上提取故障特征.试验结果表明,MLMW既抑制了噪声和谐波分量,又显著强化了故障特征;相比传统小波和包络分析,能清晰地提取非平稳非线性故障特征.由于MLMW采用简单的形态算子和高效的提升方法,计算简单高效,适于故障特征的在线分析. 相似文献
20.
三元催化器故障信号非常复杂,传统的傅立叶分析方法对故障状态识别存在一定的的困难,本研究通过实验台架获取催化器排气压力信号数据,利用小波包分析的方法提取信号正常与失效状态下的特征向量,建立特征向量与故障属性之间的映射关系,并利用这一关系对三元催化器的故障状态进行识别。实验表明,这种方法是可行并且有效的。 相似文献