首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Chronic myelogenous leukemia (CML) is characterized by the Philadelphia (Ph) translocation and BCR/ABL gene rearrangement which occur in a pluripotent hematopoietic progenitor cell. Ph-negative (Ph-) hematopoiesis can be restored in vivo after treatment with -interferon or intensive chemotherapy, suggesting that normal stem and progenitor cells coexist with the Ph+ clone. We have previously shown that Ph- progenitors are highly enriched in the CD34(+)HLA-DR- fraction from early chronic phase (ECP) CML patients. Previous studies have suggested that the Ph-translocation represents a secondary clonal hit occurring in an already clonally mutated Ph- progenitor or stem cells, leaving the unanswered question whether Ph- CD34(+)HLA-DR- progenitors are normal. To show the clonal nature of Ph- CD34(+)HLA-DR- CML progenitors, we have compared the expression of BCR/ABL mRNA with X-chromosome inactivation patterns (HUMARA) in mononuclear cells and in CD34(+)HLA-DR+ and CD34(+)HLA-DR- progenitors in marrow and blood obtained from 11 female CML patients (8 in chronic phase and 3 in accelerated phase [AP] disease). Steady-state marrow-derived BCR/ABL mRNA-, CD34(+)HLA-DR- progenitors had polyclonal X-chromosome inactivation patterns in 2 of 2 patients. The same polyclonal pattern was found in the progeny of CD34(+)HLA-DR- derived long-term culture-initiating cells. Mobilization with intensive chemotherapy induced a Ph-, BCR/ABL mRNA- and polyclonal state in the CD34(+)HLA-DR- and CD34(+)HLA-DR+ progenitors from 2 ECP patients. In a third ECP patient, polyclonal CD34(+) cells could only be found in the first peripheral blood collection. In contrast to ECP CML, steady-state marrow progenitors in late chronic phase and AP disease were mostly Ph+, BCR/ABL mRNA+, and clonal. Further, in the majority of these patients, a Ph-, polyclonal state could not be restored despite mobilization with intensive chemotherapy. We conclude from these studies that CD34(+)HLA-DR- cells that are Ph- and BCR/ABL mRNA- are polyclonal and therefore benign. This population is suitable for autografting in CML.  相似文献   

4.
Manipulation of autologous bone marrow cells (BM) for transplantation in chronic myeloid leukemia (CML) to enrich for normal cells is a novel approach that may improve survival for patients not suitable for allogeneic transplantation. Limitations of this technique include the reported low frequency of normal stem cells in CML and the difficulties in obtaining sufficient BM for manipulation. To address these problems we compared the apheresis product with the diagnostic bone marrow at diagnosis as a source of primitive BCR/ABL-negative progenitors. We analyzed the CD34+ HLA-DR- and CD34+CD38(-) populations in five CML patients to evaluate the frequency of BCR-ABL-negative progenitors and pre-progenitors in these populations. Progenitor analysis was performed by RT-PCR of individual hemopoietic colonies from a standard CFU-GM assay. Analysis of pre-progenitors involved RT-PCR of secondary colonies derived from a stroma-free pre-CFU assay. Our results show variable levels of BCR-ABL-negative progenitors in the 34+DR- population but very low levels of BCR-ABL-negative progenitors in the 34+38- population in blood. Analysis of pre-progenitors from the 34+DR- fraction of peripheral blood (PB) and BM showed 80-100% and 85-100% of colonies were BCR-ABL negative at days 14 and 28, respectively. Analysis of pre-progenitors from the 34+38- fraction of PB and BM showed 23-100% and 42-100% of colonies were BCR-ABL negative at days 14 and 28, respectively. In summary, pre-progenitors from the 34+DR- and 34+38- populations are predominantly BCR-ABL negative in both marrow and blood at diagnosis. Apheresis product collected at diagnosis is a more abundant sources of BCR-ABL-negative pre-progenitors than BM. Thus, apheresis product could potentially be utilized as a source of BCR-ABL-negative stem cells in CML.  相似文献   

5.
Umbilical cord blood (UCB) is an attractive potential alternative to bone marrow (BM) as a source of hematopoietic progenitor cells since the number of progenitors in UCB is similar or even greater than that in normal BM. It was the aim of the present study to analyze the degree of immaturity of UCB progenitor cells. UCB mononuclear (MNC) and/or CD34+ cells were tested for surface antigen phenotype, expression of cytokines receptor, effect of stem cell factor (SCF) on colony growth, resistance to mafosfamide and replating potential. We have found that 34.9 +/- 3.4% and 77.9 +/- 2.6% of UCB CD34+ cells did not express CD38 and CD45RA antigens, respectively, suggesting that UCB contains a high proportion of immature progenitor cells. By means of three-color analysis, the receptor for SCF was detected on the majority of the CD34+ HLA-DR+ subpopulation; in fact, 81.8% +/- 4.3% of CD34+ HLA-DR+ cells were defined as SCF(low) and 8.1 +/- 1.5% as SCF(high). Colony growth of MNC and CD34+ cells was enhanced by the addition of SCF to methylcellulose mixture, resulting in a statistically significant increase in CFU-GM and CFU-GEMM but not in BFU-E numbers. UCB progenitor cells showed a higher resistance to mafosfamide treatment, in comparison to BM; the addition of SCF to the culture medium resulted in a statistically significant increase in mafosfamide concentration required to inhibit 95% of colony growth (P < or = 0.05). Moreover, as shown by single colony transfer assays, the presence of SCF in primary cultures promoted a significantly higher replating potential for both untreated (42 +/- 3.3% vs 21 +/- 4.6%, P < or = 0.018) and mafosfamide-treated samples (62 +/- 5.6% vs 44 +/- 6.1%, P < or = 0.018). In conclusion, UCB is a source of progenitor cells with immature characteristics in terms of surface antigen expression, distribution of SCF receptor, resistance to mafosfamide and replating potential. Therefore, UCB progenitor cells represent an ideal candidate population for experimental programs involving gene transfer and ex vivo stem cell expansion.  相似文献   

6.
Fas antigen (CD95) is a cell surface receptor belonging to the tumour necrosis factor/nerve growth factor superfamily and is able to induce apoptosis when triggered by its' natural ligand or an anti-Fas antibody. Fas expression is low on CD34+ bone marrow (BM) progenitor cells, but is increased by various cytokines in vitro. We investigated Fas expression on CD34+ cells from 39 peripheral blood progenitor cell (PBPC) harvests and from 5 normal BM harvests by dual colour flow cytometry to determine if Fas expression was altered during mobilisation. By including calibrated microbeads during flow cytometry, we quantified the number of Fas antigen molecules per cell. A low percentage of PBPC (22%) and normal BM (23%) CD34+ cells expressed Fas antigen. Fas expression varied on CD34+ cells from different diseases and the highest expression was found in ALL (52%). There was a significant three fold increase in the number of Fas molecules/cell expressed on CD34+ cells (PBPC 6,230 molecules/cell, BM 2,236; p = 0.0003). This level of expression was considerably less than that for CD3/CD19 lymphocytes (33,095 molecules/cell) and CD14 monocytes (47,467 molecules/cell) in the PBPC harvest. In conclusion, mobilisation including the use of growth of factors, has minimal effect on CD34 progenitor cell Fas expression.  相似文献   

7.
Normal hematopoietic progenitors and acute myelogenous leukemia cells show a differential requirement for the encoded product of c-myb proto-oncogene for proliferation. To determine whether c-myb is also differentially required for the proliferation of hematopoietic progenitors of chronic myelogenous leukemia (CML), mononuclear cells derived from both chronic phase and blast crisis were exposed to c-myb antisense oligodeoxynucleotides and assayed for colony-forming ability. Exposure of CML-BC cells from 12 patients to c-myb antisense oligodeoxynucleotides resulted in significant (p<001) inhibition of leukemia colony formation (average inhibition 63%) and was accompanied by down-regulation of c-myb expression. Colonies derived from CML chronic phase progenitors were virtually unaffected in 10 cases, but down-regulation of c-myb expression was not detected. However, in studies conducted with CD34+ leukemia cells, a subset highly enriched for hematopoietic progenitors, colony formation was inhibited at both disease stages, whereas CFU-GM colony formation derived from normal CD34+ cells was not affected by exposure to c-myb antisense oligodeoxynucleotides. These data suggest that CML chronic phase and blast crisis progenitors are both sensitive to the inhibitory effects of c-myb antisense oligomers, and that the lack of inhibition in partially purified CML-chronic phase progenitors is probably due to inefficient penetration of oligodeoxynucleotides into the clonogenic cells. The preferential effect of c-myb antisense oligodeoxynucleotides on colonies arising from the compartment that includes CML-CD34+ progenitors likely reflects the expansion of a cell population with high proliferative potential and elevated c-myb mRNA levels.  相似文献   

8.
Chronic myelogenous leukemia (CML) is characterized by the continuous proliferation and abnormal circulation of malignant hematopoietic progenitors. This may be related to the unresponsiveness of CML progenitors to beta1 integrin adhesion receptor-mediated inhibition of progenitor proliferation by the marrow microenvironment. In hematopoietic cell lines, the BCR-ABL oncogene product, p210(BCR-ABL), interacts with a variety of cytoskeletal elements important for normal integrin signaling. We studied the role of p210(BCR-ABL) in abnormal integrin function in CML by evaluating the effect of inhibition of BCR-ABL expression with antisense oligodeoxynucleotides (AS-ODNs) on integrin-mediated adhesion and proliferation inhibition of malignant primary progenitors from CML marrow. Preincubation of CML CD34(+)HLA-DR+ (DR+) cells with breakpoint-specific AS-ODNs significantly increased adhesion of CML progenitors to stroma and fibronectin (FN). Pretreatment with breakpoint-specific ODNs also resulted in significant inhibition of CML progenitor proliferation after ligand or antibody-mediated beta1 integrin engagement. Breakpoint-specific ODNs were significantly more effective in restoring CML progenitor adhesion and proliferation inhibition than control ODNs. BCR-ABL mRNA and p210(BCR-ABL) levels in CML CD34(+) cells were significantly reduced after incubation with breakpoint-specific AS-ODN. These studies indicate a role for BCR-ABL in abnormal circulation and defective integrin-dependent microenvironmental regulation of proliferation of CML hematopoietic progenitors.  相似文献   

9.
Activation of the Evi-1 gene was first described to be associated with the transformation of murine myeloid leukaemias and has previously been detected in cases of human acute myeloid leukaemia (AML) and chronic myeloid leukaemia (CML) in blast crises and in myelodysplastic syndromes. In this study we determined the frequency and the level of Evi-1 expression in juvenile myelomonocytic leukaemia (JMML) and in normal haemopoiesis. Using RT-PCR and Southern blot hybridization mRNA of Evi-1 could be detected in bone marrow (BM) and peripheral blood (PB) mononuclear cells (MNC) of normal donors. In JMML 12/20 patients examined expressed elevated levels of Evi-1 compared to normal controls. In these samples over-expression of the gene was correlated with a higher percentage of blasts (P = 0.02). Expression levels in BFU-E and CFU-GM derived colonies from BM of JMML patients were lower than those in the corresponding MNC samples. Analysis of CD34+ and CD34- cells demonstrated that Evi-1 is primarily expressed in the CD34+ cell population of both JMML and normal donors. These findings suggest that Evi-1 expression is linked to the early stages of haemopoiesis. Studies on the regulation of Evi-1 expression in CD34+ cells will elucidate its function in progenitor cells and clarify its possible role in the pathogenesis of JMML.  相似文献   

10.
We examined the effect of norsegoline, a natural marine product, and dibezine, a synthetic product, on the survival of human myeloid progenitor cells [colony-forming unit-cells (CFU-C)] from normal individuals and from 10 patients with Philadelphia-positive chronic myelogenous leukemia (CML) in chronic phase and blastic crisis. We compared their effect to the effect of IFN-alpha. Norsegoline, dibezine, and IFN-alpha inhibited the proliferation of CFU-C in a dose-dependent manner. The number of CFU-C from bone marrow (BM) of five CML patients in chronic phase exposed for 16 h to norsegoline (10(-8)-10(-6)M), dibezine (10(-8)-10(-6)M), and IFN-alpha (500 units/ml) was found to be statistically lower (P < 0.05) than the number of CFU-C derived from normal individuals. A 16-h drug exposure of CD34(+) cells isolated from the peripheral blood of three CML patients in blastic crisis and from BM of two patients in chronic phase resulted in a marked inhibition in the ability of the cells to proliferate in liquid culture and a reduction in CFU-C content. Using the fluorescent in situ hybridization technique, we evaluated detection of the BCR/ABL fusion product in the CD34(+) cells. All five patients were 100% Philadelphia positive at diagnosis. BCR/ABL translocations were detected in 94.6 +/- 0.6% of cells following their growth in liquid culture for 7 days. Following exposure of CD34(+) cells to norsegoline, dibezine, or IFN-alpha, BCR/ABL fusion signals could be detected in 73 +/- 11%, 66.5 +/- 4. 7%, and 66.0 +/- 2.5% of cells from BM and 72.3 +/- 5%, 68.8 +/- 7%, and 60.6 +/- 6.8% of peripheral blood, respectively. Our data indicate that norsegoline and dibezine have in vitro an antileukemic effect against Philadelphia-positive cells and may be used in conjunction with currently available agents for ex vivo purging of BM and/or peripheral blood of CML patients in conjunction with autologous bone marrow transplantation.  相似文献   

11.
Myelosuppression is the dose-limiting toxicity for nitrosourea chemotherapy due to low levels of the DNA repair protein O6-alkylguanine-DNA alkyltransferase in myeloid precursors. We have shown that high-efficiency myeloproliferative sarcoma virus (vM5MGMT)-mediated transduction of the human MGMT cDNA into murine bone marrow (BM) cells leads to high MGMT expression and increased progenitor resistance to 1,3-bis-(2-chloroethyl) nitrosourea (BCNU) in vitro immediately after infection and after BM transplantation. These experiments were designed to increase MGMT expression in human hematopoietic progenitors. CD34(+) BM cells were isolated over an immunoaffinity column (CEPRATE, CellPro, Inc.), resulting in a mean 66-fold enrichment in clonogenic progenitors (colony-forming unit granulocyte-macrophage + burst-forming unit erythroid + colony-forming unit granulocyte erythroid macrophage = megakaryocyte), with an average progenitor yield of 58 +/- 11.5% and a final population that was 54% CD34(+). Seventy % of progenitors derived from CD34(+) cells were transduced after coculture with AM12-vM5MGMT retroviral producers. vM5MGMT-transduced progenitors were over 2-fold more resistant to concentrations of BCNU between 30 and 50 micrometer than were concurrently LacZ-transduced progenitors (P < 0.003). In vitro selection of transduced, cytokine-stimulated CD34(+) cells with 20 micrometer BCNU resulted in survival of 4.7% of MGMT+ clonogenic progenitors compared to 0.05% of LacZ+ progenitors. These studies indicate that MGMT-transduced human hematopoietic progenitors have increased resistance to nitrosoureas, and in a clinical transplant setting, this strategy may reduce alkylating agent myelosuppression.  相似文献   

12.
We previously reported the aberrant growth of granulocyte-macrophage (GM) progenitors induced by a combination of stem cell factor (SCF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in juvenile chronic myelogenous leukemia (JCML). We examined here the effects of thrombopoietin (TPO) on the proliferation and differentiation of hematopoietic progenitors in JCML. In serum-deprived single-cell cultures of normal bone marrow (BM) CD34+CD38high cells, the addition of TPO to the culture containing SCF + GM-CSF resulted in an increase in the number and size of GM colonies. In the JCML cultures, in contrast, the number of SCF + GM-CSF-dependent GM colonies was not increased by the addition of TPO. However, the TPO addition caused an enlargement of GM colonies in cultures from the JCML patients to a significantly greater extent compared with the normal controls. There was no difference in the type of the constituent cells of GM colonies with or without TPO grown by JCML BM cells. A flow cytometric analysis showed that the c-Mpl expression was found on CD13+ myeloid cells generated by CD34+CD38high BM cells from JCML patients, but was at an undetectable level in normal controls. The addition of TPO to the culture containing SCF or SCF + GM-CSF caused a significant increase in the production of GM colony-forming cells by JCML CD34+CD38neg/low population, indicating the stimulatory effects of TPO on JCML primitive hematopoietic progenitors. Normal BM cells yielded a significant number of megakaryocytes as well as myeloid cells in response to a combination of SCF, GM-CSF, and/or TPO. In contrast, megakaryocytic cells were barely produced by the JCML progenitors. Our results may provide a fundamental insight that the administration of TPO enhances the aberrant growth of GM progenitors rather than the recovery of megakaryocytopoiesis.  相似文献   

13.
Mobilized peripheral blood progenitor cells (PBPC) have been shown to differ qualitatively from bone marrow (BM) progenitors. The released progenitor cells are predominantly in G0/G1 and show a relatively high percentage of rhodamine dull cells. Within the BM these last two features are characteristic of the more primitive progenitors. Although the mobilized PB cells can give rise to long-term repopulation and thus contain stem cells, the frequency of stem cells is not much higher if long-term initiating cell (LTC-IC) assays are used. To determine whether quiescent stem cells are selectively released or the low-cycle status of PB progenitors is related to the release from the BM microenvironment, the cell cycle status and rhodamine content in the PB and BM during mobilization were studied and compared with steady-state BM. More differentiated and more primitive progenitors were separated based on differentiation markers and cloned in single cell assay. In mobilized PB 54% of the CD34+ cells (n=5) were rhodamine dull compared to 22% in steady-state BM (P=0.014) [n=6]. The percentage of CD34+ cells in the S/G2M phases of the cell cycle was 2.1% in the mobilized PB (n=11), and 18% in steady-state BM (n=11) [P=0.002]. During mobilization the fraction of cells in the S/G2M phase of the cell cycle was 16% in BM (n=7), similar to steady-state BM (P=0.34). The released progenitors represented a selection of BM progenitors, with significantly more primitive progenitors (CD34+/13+/33dim) and less lymphoid precursors (CD34+/19+). Within the more differentiated CD34+113+/33bright, myelomonocytic precursors, both in PB as well as in BM, the percentage S/G2M was relatively higher than in the CD34+/13+/33dim subfraction: in normal BM: median 18% vs 8% (P=0.006) [n=8]; in mobilized PB 3% vs 2% (P=0.03) [n=10]; and in BM during mobilization 24% vs 7% (P=0.01) [n=6]. The cycle status of mobilized PB progenitors was low both in the primitive and more differentiated subfractions. During the mobilization period the BM progenitors are cycling as in steady-state BM. The low-cycle status of the mobilized PB progenitors may be related to the loss of contact with the micro-environment.  相似文献   

14.
15.
Direct killing of CD4+ lymphocytes by human immunodeficiency virus-1 (HIV-1) probably cannot account for the magnitude of the loss of these cells during the course of HIV-1 infection. Experimental evidence supports a pathophysiologic role of the apoptotic process in depletion of CD4 cells in acquired immunodeficiency syndrome (AIDS). The Fas-receptor/Fas-ligand (Fas-R/Fas-L) system mediates signals for apoptosis of susceptible lymphocytes and lympoblastoid cell lines. A number of investigators have recently reported increased expression of the Fas receptor in individuals with HIV infection, along with increased sensitivity of their lymphocytes to anti-Fas antibody mimicking Fas ligand. We attempted to determine the role of Fas-mediated apoptosis in disease progression and viral replication. Increased Fas-receptor (CD95) expression on CD4+ and CD8+ lymphocytes was found in a large group of HIV-1-infected patients compared with normal controls; individuals with a diagnosis of AIDS and a history of opportunistic infection had significantly more Fas receptor expression than did asymptomatic HIV-infected persons and normal blood donor controls (P < .01). Triggering of the Fas-R by agonistic anti-Fas monoclonal antibody, CH11, was preferentially associated with apoptosis in the CD4+ cells; this effect was more pronounced in lymphocytes derived from HIV+ individuals. Soluble and membrane-bound forms of Fas-L were produced in greater amounts in peripheral blood mononuclear cells (PBMC) cultures and in plasma obtained from HIV-1-infected persons than from normal controls. Furthermore, triggering of lymphocytes from HIV-infected persons by CH11 increased levels of interleukin-1beta converting enzyme (ICE), a protein associated with apoptosis. When PBMC were cultured in the presence of CH11, p24 production per number of viable cells was decreased as compared with the same PBMC without CH11 (P < .01). These findings suggest that multiple mechanisms, including increased production of Fas-L by infected PBMC, increased Fas-R expression, and induction of a protease of ICE family, may play roles in the apoptotic depletion of CD4+ cells in HIV infection.  相似文献   

16.
It is known that osteoblast precursor cells are found in the low-density mononuclear (LDMN) fraction of human bone marrow (BM) aspirates. The purpose of this study was to investigate whether CD34, a hematopoietic progenitor cell marker, is present on osteoblast progenitor cells. LDMN, CD34+, and CD34- cells were cultured under conditions that promote growth and differentiation of mineral-secreting osteoblasts in a limiting dilution manner. With LDMN cells, osteoblast progenitor cells were found at an average frequency of 1/36,000 cells. With CD34- cells, osteoblast progenitor frequency remained at an average of 1/33,000, similar to LDMN cells. With CD34+ selected cells, osteoblast progenitor frequency increased to an average of 1/5,000. This osteoblast progenitor frequency is maintained in sorted CD34+/CD38+ cells. The osteoblasts generated from CD34+ cells were morphologically normal, and expression of skeletal-specific alkaline phosphatase and osteonectin increased upon differentiation induced by dexamethasone (DEX) treatment. Ultrastructurally, these CD34+ cell-derived osteoblasts displayed osteoblast-specific features. Functionally, these CD34+ cell-derived osteoblasts differentiated with DEX treatment, increased the level of cyclic adenosine monophosphate in response to parathyroid hormone stimulation, increased the level of alkaline phosphatase activity, and increased mineral secretion. These results demonstrate that osteoblast progenitor cells are enriched in the CD34+ cell population from BM and that these progenitor cells can differentiate into functional osteoblasts in culture.  相似文献   

17.
18.
19.
Myelodysplastic syndrome (MDS) is believed to be a stem-cell disorder involving cytopenia and dysplastic changes in three hematopoietic lineages. However, the involvement of pluripotent stem cells and progenitor cells has not been clarified conclusively. To address this issue, we used fluorescence in situ hybridization (FISH) of blood and bone marrow (BM) smears for mature cells and FISH of cells sorted by fluorescence-activated cell sorting for progenitor cells. Seven patients with MDS associated with trisomy 8 were studied. FISH showed +8 in granulocytes, monocytes, and erythroblasts, but not in lymphocytes. Sorted cells of T (CD3(+)), B (CD19(+)), and NK cells (CD3(-)CD56(+)) from peripheral blood did not contain +8, nor did CD34(+) subpopulations from BM including B (CD34(+)CD19(+)), T/NK (CD34(+)CD7(+)) progenitors, and pluripotent stem cells (CD34(+)Thy1(+)). The +8 chromosome abnormality was identified in stem cells only at the level of colony-forming unit of granulocyte-erythrocyte-macrophage-megakaryocyte (CFU-GEMM; CD34(+)CD33(+)). It may thus be concluded that cells affected by trisomy 8 in the context of MDS are at the CFU-GEMM level and that cells of lymphoid lineage are not involved. These results provide new insights into the biology of MDS and suggest that intensive chemotherapy and autologous BM transplantation may become important therapeutic strategies.  相似文献   

20.
The transfer and expression of cytokine genes into tumor cells is reportedly a valuable approach to improve the antitumor activity of cytokines in various models. Interferon (IFN)-alpha may induce hematological remission in chronic myeloid leukemia (CML) patients, but only a small proportion of patients achieve a sustained, complete cytogenetic remission. We have investigated the possibility of transducing CML cells with the retroviral vector LIalpha2SN, which encodes the IFN-alpha2 gene. We first optimized the transduction efficiency using the CML-derived K562 cell line. A transduction efficiency of 50% and 85% after three and six infections, respectively, was obtained in K562 cells. We then expressed IFN-alpha2 in CML cells by transducing the latter with LIalpha2SN viral particles. The IFN-alpha secretion after three and six infections was 5,400 and 18,000 U/24 hours/10(6) cells for unselected K562 cells and 7,000 and 290 U/24 hours/10(6) cells for CML CD34+ cells at days 4 and 5. Moreover, the major histocompatibility complex class I antigens were overexpressed after infection with LIalpha2SN in both K562 and CML CD34+ cells. The proliferation (in liquid culture) and the cloning efficiency of these CML cells were significantly decreased after LIalpha2SN treatment. By contrast, the proliferation of cord blood CD34+ cells was not affected by transduction with LIalpha2SN. These results demonstrate the transduction efficiency of CML cells and suggest the possibility of CML cell immunotherapy with retroviral gene transfer of different cytokines such as IFN-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号