首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ecdysteroid titres have been determined in adult female house crickets (Acheta domesticus) in relation to reproductive maturation. Ecdysteroid levels in newly emerged adult females are low except in the gut and carcass, which probably reflects the remnants of the preecdysial ecdysteroid peak. Ecdysteroid levels in all compartments increase markedly once ovarian weight surpasses 10 mg. Apolar ecdysteroid conjugates (ecdysone 22-fatty acyl esters) predominate in ovarian tissue throughout ovarian maturation, but low levels of free ecdysteroid and polar conjugated ecdysteroids are also present. During this period, two peaks of ecdysteroids (mainly free and apolar conjugated ecdysteroids) are observed in the haemolymph, gut, and carcass compartments. The peaks in the haemolymph occur when the ovarian mass reaches 30 and 100 mg. The gut and carcass may be acting as sinks or sites of metabolism for the hormone released from the ovaries. The rate of ecdysone acylation by ovaries was found to be developmentally regulated, increasing from low levels in the immature ovaries of newly emerged females as the ovaries increase in size. A semiquantitative assay has been developed to identify compounds which inhibit the conversion of [3H]ecdysone into 22-fatty acyl [3H]ecdysone by ovaries in vitro. A number of ecdysteroids possessing a free hydroxyl group as C-22 as well as the side-chain stereochemistry of ecdysone effectively inhibit this conversion, probably by acting as competitive substrates. In the cases of 20-hydroxyecdysone and ponasterone A, it was clearly demonstrated that these compounds are converted to a mixture of C-22 fatty acyl esters. Several other compounds which have been suggested to affect ecdysteroid metabolism/mode of action in other systems were also tested for their effects on the acyltransferase activity of ovaries in vitro.  相似文献   

2.
1. The pharmacokinetics of a novel benzodiazepine partial inverse agonist (S-8510) were studied in the Fischer 344 (F344) rat and B6C3F1 mouse to obtain information for the planning of carcinogenicity studies. Sprague-Dawley (SD) rats were also included for comparison. 2. Clear non-linear elimination of S-8510 was observed after single oral administration of S-8510 in all animals tested (F344 rat, 1-50 mg/kg; SD rat and B6C3F1 mouse, 1-150 mg/kg). 3. Exposure of S-8510 after single oral administration was in the order F344 rat > B6C3F1 mouse > SD rat. 4. Multiple oral administration to F344 rat and B6C3F1 mouse decreased the exposure to S-8510. 5. These results indicate that it is very important to evaluate pharmacological and toxicological studies based on exposure and to be careful in selecting the species and strains of animal used in toxicology studies.  相似文献   

3.
An increasing number of studies, both experimental and epidemiologic, have provided evidence that filtering glaucoma surgery may be less effective than initially described. Of a number of risk factors for failure, duration and number of antiglaucoma drugs prior to surgery seem to play a critical role and highly accumulated antiglaucoma topical treatments significantly reduce success rates. Histopathological studies have confirmed that topically applied drugs may exert toxic effects to the corneoconjunctival surface, and induce chronic infraclinical inflammation, as shown by the presence of immune and inflammatory infiltrates in multitreated eyes. The origin of topical inflammation has not yet been clearly determined, but a common component of ophthalmic drugs, the benzalkonium chloride used as preservative in almost all antiglaucoma preparations, has shown strong evidence of toxicity. A number of questions remain to be investigated, but suppression of preservatives from chronically applied drugs should be a critical issue in the near future.  相似文献   

4.
5.
Patulin is a mycotoxin produced by many fungal species of the genera Penicillium, Aspergillus and Bryssochamys. Previous literature reports have suggested that patulin is toxic to the immune system. The studies presented were conducted to provide a comprehensive assessment of the effects of patulin on the immune system. Unlike previous reports, the doses of patulin used (0.08, 0.16, 0.32, 0.64, 1.28 and 2.56 mg/kg) were based on predicted human exposure levels. Female B6C3F1 mice were exposed orally to patulin for 28 days. Effects were not observed on final body weight or body weight gain. Relative weight of the liver, spleen, thymus, kidneys with adrenals, and lungs was not affected. Peripheral blood leucocyte and lymphocyte counts were decreased by approximately 30% in the two highest dose groups. The leucocyte differential was not altered. Total spleen cell, total T-cell (CD3+), helper T-cell (CD4+CD8-), B-cell (surface immunoglobulin+) and monocyte (MAC-3+) counts were not changed. Cytotoxic T-cell (CD8+CD4-) counts were increased 50% only by the highest dose. Natural killer cell (NK1.1+CD3-) and monocyte (MAC-1+) counts were increased 30% and 24%, respectively, only in the 0.08 mg/kg group. Humoral immune function as assessed by antibody-forming cell response and serum IgM titre to sheep erythrocytes, and cell-mediated immune function evaluated utilizing natural killer cell activity and the mixed lymphocyte reaction were not altered. Oral exposure to patulin for 28 days did not alter the ability of female B6C3F1 mice to mount either a cell-mediated or humoral immune response.  相似文献   

6.
The goals of this study were to (1) determine the effects of repeated inhalation of relatively insoluble nickel oxide (NiO) and highly soluble nickel sulfate hexahydrate (NiSO4.6H2O) on lung particle clearance, (2) investigate the effects of repeated inhalation of NiO or NiSO4 on the pulmonary clearance of subsequently inhaled 85Sr-labeled microspheres, (3) correlate the observed effects on clearance with accumulated Ni lung burden and associated pathological changes in the lung, and (4) compare responses in F344 rats and B6C3F1 mice. Male F344/N rats and B6C3F1 mice were exposed whole-body to either NiO or NiSO4.6H2O 6 hr/day, 5 days/week for up to 6 months. NiO exposure concentrations were 0, 0.62, and 2.5 mg NiO/m3 for rats and 0, 1.25, and 5.0 mg NiO/m3 for mice. NiSO4.6H2O exposure concentrations were 0, 0.12, and 0.5 mg NiSO4.6H2O/m3 for rats and 0, 0.25, and 1.0 mg NiSO4.6H2O/m3 for mice. After 2 and 6 months of whole-body exposure, groups of rats and mice were acutely exposed nose-only to 63NiO (NiO-exposed animals only), 63NiSO4.6H2O (NiSO4.6H2O-exposed animals only), or to 85Sr-labeled polystyrene latex (PSL) microspheres (both NiO- and NiSO4.6H2O-exposed animals) to evaluate lung clearance. In addition, groups of rats and mice were euthanized after 2 and 6 months of exposure and at 2 and 4 months after the whole-body exposures were completed to evaluate histopathological changes in the left lung and to quantitate Ni in the right lung. Repeated inhalation of NiO results in accumulation of Ni in lungs of both rats and mice, but to a greater extent in lungs of rats. During the 4 months after the end of the whole-body exposures, some clearance of the accumulated Ni burden occurred from the lungs of rats and mice exposed to the lower, but not the higher NiO exposure concentrations. Clearance of acutely inhaled 63NiO was also impaired in both rats and mice, with the extent of impairment related to both exposure concentration and duration. However, the clearance of acutely inhaled 85Sr PSL microspheres was not impaired. The repeated inhalation of NiO resulted in alveolar macrophage (AM) hyperplasia with accumulation of NiO particles in both rats and mice, chronic alveolitis in rats, and interstitial pneumonia in mice. These lesions persisted throughout the 4-month recovery period after the NiO whole-body exposures were terminated. In contrast, repeated inhalation of NiSO4.6H2O did not result in accumulation of Ni in lungs of either rats or mice and did not affect the clearance of 63NiSO4.6H2O inhaled after either 2 or 6 months of NiSO4.6H2O exposure. Clearance of the 85Sr-labeled microspheres was significantly impaired only in rats exposed to the microspheres after 2 months of exposure to NiSO4.6H2O. Histopathological changes in rats were qualitatively similar to those seen in NiO-exposed rats. Only minimal histopathological changes were observed in NiSO4.6H2O-exposed mice. These results suggest that repeated inhalation of NiO at levels resulting in AM hyperplasia and alveolitis may impair clearance of subsequently inhaled NiO. The potential effects of repeated inhalation of soluble NiSO4.6H2O on the clearance of subsequently inhaled poorly soluble particles are less clear.  相似文献   

7.
1,6-Hexanediamine (HDA) is a high production volume chemical which is used as an intermediate in the synthesis of paints, resins, inks, and textiles and as a corrosion inhibitor in lubricants. Two- and 13-week studies of the toxicity of the dihydrochloride salt of HDA (HDDC) were conducted in male and female Fischer 344/N rats and B6C3F1 mice using whole-body inhalation exposure. Both species were evaluated for histopathologic and reproductive effects, and rats were examined for clinical chemistry and hematologic changes. In the 2-week inhalation studies, animals were exposed to 10-800 mg HDDC/m3, 6 hr per day. All rats, all female mice, and two of five male mice in the high-exposure group died before the end of the study. Surviving mice in this group had a dose-dependent depression in body weight gain. Clinical signs were primarily related to upper respiratory tract irritation and included dyspnea and nasal discharge in both species. Treatment-related histopathologic lesions included inflammation and necrosis of the laryngeal epithelium of both species and the tracheal epithelium of mice, as well as focal inflammation and ulceration of the respiratory and olfactory nasal mucosa. In the 13-week inhalation studies, animals were exposed to HDDC at concentrations of 1.6-160 mg/m3 for 6 hr per day, 5 days per week. In addition to the base study groups, a supplemental group of rats at each exposure level was included to assess the effect of HDDC on reproduction. No treatment-related changes in organ weights or organ-to-body-weight ratios occurred in rats, and no treatment-related clinical signs or gross lesions were seen in either species. Chemical-related microscopic lesions were limited to the upper respiratory tract (larynx and nasal passages) in the two highest exposure groups and were similar in both species. These lesions included minimal to mild focal erosion, ulceration, inflammation, and hyperplasia of the laryngeal epithelium, in addition to degeneration of the olfactory and respiratory nasal epithelium. HDDC caused no significant changes in sperm morphology or vaginal cytology and no significant adverse effects on reproduction in rats or mice. Hematologic and clinical chemistry changes in rats were minor and sporadic and were not accompanied by related histologic findings. HDDC did not increase the frequency of micronucleated erythrocytes in mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Human and B6C3F1 mouse liver tissue was exposed to trichloroethylene (TCE) to determine metabolic rate constants. Using a novel volatile exposure system based on precision-cut tissue explants, TCE biometabolism was measured by appearance of a major oxidative product trichloroacetic acid (TCA). TCE metabolic rate was linear in this system to 150 minutes, allowing calculation of Michaelis-Menten kinetic parameters, Km and Vmax. Both human and mouse liver explants tolerated exposure to TCE up to 750 microM without evidence of cytotoxicity. Km values for mouse and human tissue were 215 and 30.6 microM TCE, respectively, and Vmax estimates were 6.14 and 0.47 ng TCA produced per mg protein*min-1, mouse and human, respectively. These results are consistent with other reports in describing the greater capacity of mice to metabolize TCE. Metabolic differences such as these must be considered when interpreting the implications of TCE-induced toxicity in rodent models for human health assessment.  相似文献   

9.
2-Butoxyethanol (2BE) is used extensively in the production of cleaning agents and solvents. It is primarily metabolized in the liver to 2-butoxyacetic acid (2BAA), which is believed to be responsible for 2BE toxicities associated with hemolysis of red blood cells. The objective of the study was to characterize the systemic disposition of 2BE and 2BAA in rats and mice during 2-year 2BE inhalation toxicity studies. Male and female F344 rats and B6C3F1 mice (6-7 weeks old) were exposed to target 2BE concentrations of 0, 31.2, 62.5, or 125 ppm (rats), or 0, 62.5, 125, or 250 ppm (mice), by whole-body inhalation for 6 h/day, 5 days/week for up to 18 months. Postexposure blood samples were collected after 1 day, 2 weeks, and 3, 6, 12, and 18 months of exposure. Postexposure 16-h urine samples were collected after 2 weeks and 3, 6, 12, and 18 months of exposure. A separate set of mice was kept in the control chamber and exposed to 2BE for 3 weeks when they were approximately 19 months old. Postexposure blood samples were collected after 1 day and 3 weeks of exposure and 16-h urine samples were collected after 2 weeks of exposure from these aged mice. Blood samples were analyzed for both 2BE and 2BAA and urine samples were analyzed for 2BAA using GC/MS, and their kinetic parameters were estimated through the curve-fitting method using SAS. Systemically absorbed 2BE was rapidly cleared from blood (t1/2-RAT < 10 min; t1/2-MOUSE < 5 min after the 1-day exposure) independent of exposure concentration. Proportional increases in AUC2BE relative to increases in exposure concentration indicated linear 2BE kinetics. In contrast, the rate of 2BAA elimination from blood decreased as the exposure concentration increased. Nonproportional increases in AUC2BAA also indicated that 2BAA is eliminated following dose-dependent, nonlinear kinetics. Overall, mice eliminated both 2BE and 2BAA from blood faster than rats. Sex-related differences in 2BAA elimination were most significant with rats, in that females were less efficient in clearing 2BAA from the blood. Differences in renal excretion of 2BAA are possibly responsible for the sex-related difference in the 2BAA blood profiles in rats. As exposure continued, the rates of elimination for both 2BE and 2BAA decreased in both species, resulting in longer residence times in the blood. When 19-month-old naive mice were exposed to 125 ppm, 2BE was rapidly cleared from the systemic circulation, exhibiting clearance profiles similar to young mice. However, old mice eliminated 2BAA from blood > 10 times slower than young mice after 1-day of exposure. This delayed elimination of 2BAA in old mice was less obvious after 3 weeks of exposure, suggesting that there might be other factors in addition to the age of animals that could influence the apparent difference in 2BAA kinetics between old and young mice. It was concluded that the elimination kinetics of 2BE and 2BAA following repeated 2BE exposure appear to be dependent on species, sex, age, time of exposure, as well as the exposure concentration.  相似文献   

10.
Brominated and chlorinated haloacetates (HAs) are by-products of drinking water disinfection. Dichloroacetate (DCA) and trichloroacetate (TCA) are hepatocarcinogenic in rodents, but the brominated analogs have received little study. Prior work has indicated that acute doses of the brominated derivatives are more potent inducers of oxidative stress and increase the 8-hydroxydeoxyguanosine (8-OH-dG) content of the nuclear DNA in the liver. Since, DCA and TCA are also known as weak peroxisome proliferators, the present study was intended to determine whether this activity might be exacerbated by peroxisomal proliferation. Classical responses to peroxisome proliferators, cyanide-insensitive acyl-CoA oxidase activity and increased 12-hydroxylation of lauric acid, were elevated in a dose-related manner in mice maintained on TCA and clofibric acid (positive control), but not with DCA, dibromoacetate (DBA) or bromochloroacetate (BCA). Administration of the HAs in drinking water to male B6C3F1 mice for periods from 3 to 10 weeks resulted in dose-related increases in 8-OH-dG in nuclear DNA of the liver with DBA and BCA, but not with TCA or DCA. These findings indicate that oxidative damage induced by the haloacetates is, at least in part, independent of peroxisome proliferation. In addition, these data suggest that oxidative damage to DNA may play a more important role in the chronic toxicology of brominated compared to the chlorinated haloacetates.  相似文献   

11.
The discovery of Helicobacter hepaticus infection, H. hepaticus hepatitis, and increased incidence of liver tumors in control males from several recent National Toxicology Program B6C3F1 mouse carcinogenicity bioassays raised questions regarding the suitability of these bioassays for hazard identification. The purpose of this study was to determine if changes in cell proliferation and death at terminal sacrifice might be linked to the increased liver tumor incidences among control males. In control males, enhanced rates of hepatocyte proliferation, as assessed by immunostaining for proliferating cell nuclear antigen (PCNA), and apoptosis, as assessed from hematoxylin and eosin- and TUNEL-stained preparations, were seen in 3 bioassays with H. hepaticus hepatitis. One bioassay with H. hepaticus infection without attendant hepatitis and one bioassay without H. hepaticus or hepatitis did not have elevated rates of hepatocyte proliferation or apoptosis. There was no significant effect on PCNA cell proliferation indices or apoptosis in females. The present findings are indicative of a clear association between the presence of H. hepaticus infection with attendant hepatitis, increased cell proliferation and apoptosis, and increased incidences of hepatocellular neoplasia in males but not in females. Thus, the interpretation of liver tumor responses in H. hepaticus-infected studies is considered to be confounded in male mice. The lack of enhanced cell proliferation or hepatocellular neoplasia in control females suggests that bioassay results from females are valid for hazard identification. Furthermore, the absence of enhanced cell proliferation in lungs and kidneys of male and females suggests that neoplastic effects at these sites are not exacerbated by H. hepaticus infection.  相似文献   

12.
Trichloroacetate (TCA), dichloroacetate (DCA), and bromodichloroacetate (BDCA) are byproducts of the chlorination of drinking water. TCA acts primarily as a peroxisome proliferator, but DCA produces tumors at doses less than required for peroxisome proliferation. BDCA does not induce peroxisome proliferation even at high doses. This study attempts to determine whether differences in the metabolism of the trihaloacetates (THAs) may contribute to their differing toxicological properties. Studies were performed in male B6C3F1 mice given [14C1,2]TCA, [14C1]BDCA, and [14C1,2]DCA by gavage. The replacement of a Cl by a Br greatly enhances THA metabolism. Much less radiolabel from BDCA is retained in the carcass after 24 hr than from TCA. Radiolabel from BDCA is largely found in the urine, with oxalate being the major metabolite. TCA is largely eliminated unchanged in the urine. There are dose-related changes in the rate of CO2 production from BDCA. The initial rate of CO2 production is reduced from 4.1 +/- 0.3 hr-1 at 5 and 20 mg/kg to 2.7 +/- 0.6 hr-1 at 100 mg/kg, but the net conversion to CO2 in 24 hr is greater at the highest dose. As would be predicted, substitution Br for Cl on TCA greatly increased its metabolism.  相似文献   

13.
Unleaded gasoline (UG) vapor (2056 ppm) increased the incidence of liver tumors in a chronic bioassay and exhibited tumor-promoting activity in N-nitrosodiethylamine (DEN)-initiated female mouse liver. Estrogen inhibited mouse liver tumor development and the hepatocarcinogenic and tumor-promoting dose of UG produced uterine changes suggestive of estrogen antagonism. To directly test the hypothesis that UG-induced tumor-promoting ability is secondary to its interaction with the mouse liver tumor inhibitor, estrogen, we compared the tumor-promoting ability of UG in ovariectomized (Ovex) mice with the hepatic tumor-promoting ability of UG in intact mice. Ovaries were surgically removed at 4 weeks of age. Exposure to wholly vaporized UG (2018 ppm) under bioassay and tumor-promoting conditions began at 8 weeks of age. After 4 months of exposure, UG increased relative liver weight and hepatic microsomal cytochrome P450 pentoxyresourfin-O-dealkylase and ethoxyresorufin-O-deethylase activity to a similar extent in intact and Ovex mice. Non-focal hepatocyte proliferation, as measured by the incorporation of bromo-deoxyuridine, was not changed by UG exposure and was similar in all treatment groups. After 4 months of exposure to DEN-initiated mice, UG significantly increased the volume fraction of liver occupied by foci (three-fold) as compared to control intact mice. As expected, volume of foci was elevated in DEN/Ovex/control mice as compared to DEN/intact/control mice. In DEN/Ovex mice UG did not significantly increase the focal volume fraction. Thus, the tumor promoting activity of UG, as demonstrated by increased volume fraction of liver occupied by hepatic foci in intact mice, is greatly attenuated in Ovex mice. The volume fraction data in Ovex mice support the hypothesis that the tumor promoting activity of UG is dependent upon the interaction of UG with ovarian hormones. These data also indicate that hepatic microsomal cytochrome P450 PROD and EROD induction, hepatomegaly and non-focal hepatic LI are not specific markers of hepatic tumor promoting activity of UG.  相似文献   

14.
1,3-Butadiene and styrene are oxidized, in part, by cytochrome P450 2E1 and have been shown to metabolically interact in rodents exposed by inhalation to mixtures of both compounds. Because the reactive metabolites of butadiene and styrene are thought to be responsible for the toxicity of each compound, metabolic interactions may alter the response in animals exposed to mixtures of butadiene and styrene compared with the response in animals exposed to butadiene alone or styrene alone. The purpose of this study was to quantitate alterations in genotoxicity and cytotoxicity in male B6C3F1 mice exposed to mixtures of butadiene and styrene. Male B6C3F1 mice were exposed to 6.25, 62.5, 200, or 625 ppm butadiene alone, 50 ppm styrene alone, or mixtures of 6.25, 62.5, 200, or 625 ppm butadiene and 50 ppm styrene. Genotoxicity was assessed by quantitating the frequency of micronucleated polychromatic erythrocytes in bone marrow. Cytotoxicity was assessed by counting total spleen and thymus cells and by quantitating the frequency of polychromatic erythrocytes in the peripheral blood. Butadiene and mixtures of butadiene and styrene were genotoxic in mice, as shown by a significant increase in the frequency of micronucleated polychromatic erythrocytes. The increased frequency following exposure to mixtures of butadiene and styrene was not significantly different compared with the frequency following exposure to butadiene alone. Styrene and mixtures of butadiene and styrene were cytotoxic in mice, as shown by significantly decreased number of spleen cells. Exposure to mixtures of butadiene and styrene with butadiene concentrations of 62.5 or 625 ppm significantly reduced the number of thymus cells. Exposure to 200 ppm or 625 ppm butadiene alone, or to mixtures of 200 ppm or 625 ppm butadiene and 50 ppm styrene, significantly reduced the frequency of polychromatic erythrocytes in the peripheral blood. The results of the study demonstrate that exposure to mixture of butadiene and styrene does not reduce the respective genotoxicity of butadiene or cytotoxicity of styrene.  相似文献   

15.
The overall objective of these studies was to characterize the effects of ethanol on the immunocompetence of adult female B6C3F1 mice. To obtain a significant suppression in the antibody response to SRBC, splenocytes from untreated mice had to be directly exposed to concentrations of ethanol from 0.3% to 3.0%, or to acetaldehyde at concentrations greater than 0.03%. We do not believe that these results are consistent with a role by a direct effect by either ethanol or its primary metabolite because these concentrations are higher than what could be obtained as reasonable blood levels. For in vivo exposure, we employed a pair-feeding regimen which was based on a liquid diet containing 5% ethanol (v/v) that provided 36% of the caloric intake as ethanol. Our results indicated that there was a definite temporal relationship to the consequent suppression of the antibody response to SRBC in that no effect was observed after 14 days exposure, and that the magnitude of the suppression increased from 18% after 21 days to 70% after 42 days. We also monitored the liver for histopathology and observed that the ethanol-induced liver damage was restricted to steatosis (fatty liver), which was also manifested with time and which was most pronounced after 42 days exposure. In contrast to our results with the in vivo antibody response, we saw no effect on mitogen-induced proliferation by splenocytes from ethanol-treated mice. These results prompted us to measure in vitro antibody responses by splenocytes from ethanol-treated mice. We saw no suppression of the in vitro antibody responses to SRBC, DNP-Ficoll or LPS after any length of exposure to ethanol, and speculated that the basis for the suppression of the in vivo antibody response was an indirect consequence of exposure. We subsequently determined that when normal splenocytes were cultured in 5% serum from ethanol-exposed mice (42-day group), there was a > 80% suppression relative to the serum from the pair-fed controls. As important controls for these studies, we have demonstrated that there was no difference between the responses of normal lymphocytes cultured in 5% normal mouse serum and in 5% serum taken from the pair-fed restricted controls. A determination of the ethanol content in the serum from ethanol-exposed mice (42-day group) indicated that the amount of ethanol present in these cultures was < 0.003%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Periodontal inflammatory and cystlike lesions were detected in aged BDF1 and B6C3F1 mice. Lesions were unilateral, single, and located in the labial region of the incisor teeth. The largest cystlike lesion deformed the skull. Histologically, the cystlike lesions were classified into three types: predominantly an inflammatory reaction, predominantly a cyst formation, and a mixed lesion. These periodontal inflammatory and cystlike lesions were pathogenetically similar and were considered sequential changes; the lesions showing both cyst formation and inflammatory reaction seemed to be intermediate along a path toward formation of large cysts. The cysts probably were derived from periodontal tissue and developed as a result of inflammatory reaction to foreign bodies, including hair. The term "murine periodontal cyst" is proposed for this lesion. Detailed pathogenetic studies on murine odontogenic cystic lesions may be warranted.  相似文献   

17.
Dichloroacetate (DCA) is a by-product of drinking water chlorination. Administration of DCA in drinking water results in accumulation of glycogen in the liver of B6C3F1 mice. To investigate the processes affecting liver glycogen accumulation, male B6C3F1 mice were administered DCA in drinking water at levels varying from 0.1 to 3 g/l for up to 8 weeks. Liver glycogen synthase (GS) and glycogen phosphorylase (GP) activities, liver glycogen content, serum glucose and insulin levels were analyzed. To determine whether effects were primary or attributable to increased glycogen synthesis, some mice were fasted and administered a glucose challenge (20 min before sacrifice). DCA treatments in drinking water caused glycogen accumulation in a dose-dependent manner. The DCA treatment in drinking water suppressed the activity ratio of GS measured in mice sacrificed at 9:00 AM, but not at 3:00 AM. However, net glycogen synthesis after glucose challenge was increased with DCA treatments for 1-2 weeks duration, but the effect was no longer observed at 8 weeks. Degradation of glycogen by fasting decreased progressively as the treatment period was increased, and no longer occurred at 8 weeks. A shift of the liver glycogen-iodine spectrum from DCA-treated mice was observed relative to that of control mice, suggesting a change in the physical form of glycogen. These data suggest that DCA-induced glycogen accumulation at high doses is related to decreases in the degradation rate. When DCA was administered by single intraperitoneal (i.p.) injection to na?ve mice at doses of 2-200 mg/kg at the time of glucose challenge, a biphasic response was observed. Doses of 10-25 mg/kg increased both plasma glucose and insulin concentrations. In contrast, very high i.p. doses of DCA (> 75 mg/kg) produced progressive decreases in serum glucose and glycogen deposition in the liver. Since the blood levels of DCA produced by these higher i.p. doses were significantly higher than observed with drinking water treatment, we conclude that apparent differences with data of previous investigations is related to substantial differences in systemic dose and/or dose-time relations.  相似文献   

18.
19.
This study compared the interaction of strain with isolation rearing on startle reactivity, habituation, and prepulse inhibition (PPI) in male Lewis, Sprague-Dawley, and Fischer F344 rats tested as adults. Lewis and Fischer rats exhibited lower startle reactivity than Sprague-Dawley rats. Lewis rats displayed more rapid habituation than the other strains. Most important, isolation rearing produced deficits in PPI in both Sprague-Dawley and Fischer rats but had no effect in Lewis rats. By contrast, isolation rearing had no effect on startle reactivity or habituation. In a separate study, 0.5 mg/kg apomorphine disrupted PPI in Fischer but not in Lewis rats. Thus, PPI in Lewis rats is relatively unaffected by either a pharmacological or a developmental manipulation, both of which disrupt PPI in Sprague-Dawley and Fischer F344 rats.  相似文献   

20.
Fumonisin B1 (FB1) is a fungal toxin produced by members of the genus Fusarium. Ingestion of FB1 causes species-specific neurotoxic, nephrotoxic, hepatotoxic and pulmonary effects. The clinical, haematological and pathological responses of adult male and female B6C3F1 mice to FB1 were assessed following 14 daily gavage doses ranging from 1 to 75 mg FB1/kg body weight/day. There were no consistent sex-related changes. Although all responses were modest, the most notable effects of FB1 were on the liver, bone marrow, adrenals and kidneys. In the liver, hepatocellular single cell necrosis, mitosis and anisokaryosis were observed, accompanied by elevated serum ALT. In the kidneys, minor histopathological changes were confined to female mice, while mild decreases in ion transport and increases in blood urea nitrogen were seen only in males. Small changes in glutathione levels were observed in the kidneys and livers of male mice. Adrenal cortical cell vacuolation was observed at 15 mg FB1/kg and higher in females and from 35 mg FB1/kg in males. Serum cholesterol was elevated in both male and female mice, possibly due to FB1-induced changes in lipid metabolism in the liver and adrenals. Although bone marrow cell numbers were unchanged, increases in vacuolated myeloid cells and lymphocytes were observed in female mice. In general, the degree of changes observed indicate that mice are not as sensitive a model of FB1 toxicity as rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号