首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The aim of this study was to evaluate the antioxidant mechanisms of red ginseng essential oil (REO) in cells as well as in an animal model. REO was prepared by a supercritical CO(2) extraction of waste-products generated after hot water extraction of red ginseng. In HepG2 cells, REO diminished the H(2)O(2)-mediated oxidative stress and also restored both the activity and expression of antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Administration of REO inhibited the phosphorylation of upstream mitogen-activated protein kinases (MAPKs) such as c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38. In mice, the CCl(4)-mediated elevation of serum aspartate transaminase and alanine transaminase as well as the induction of hepatic lipid peroxidation were decreased by REO administration. REO treatments also resulted in up-regulation of the antioxidant enzyme expression in the liver. Moreover, increased phosphorylations of MAPKs were inhibited after REO administration. Overall, REO seems to protect the liver from oxidative stress through the activation and induction of antioxidant enzymes via inhibition of MAPKs pathways.  相似文献   

2.
Hasaba A  Cluette-Brown JE  Laposata M 《Lipids》2003,38(10):1051-1055
FA ethyl esters (FAEE) are nonoxidative metabolites of ethanol produced by the esterification of FA and ethanol. FAEE have been implicated as mediators of ethanol-induced organ damage in vivo and in vitro, and are markers of ethanol intake. Upon ethanol intake, FAEE are synthesized in the liver and pancreas in significant quantities. There is limited information on the stimulation of FAEE synthesis upon addition of exogenous FA in vitro. HepG2 cells were incubated with ethanol alone, ethanol with 25 microM linoleate, and ethanol with 25 microM stearate. The amount of FAEE in human hepatoblastoma (HepG2) cells was determined 1-3 h after ethanol and FA addition. Stearate increased the FAEE concentration in HepG2 cells when incubated with the cells for 1 h, whereas linoleate did not increase the cellular FAEE concentration at any time. Ethyl palmitate, ethyl stearate, and ethyl oleate were the predominant FAEE species identified in all cases, independent of the specific supplemental FA added to the medium.  相似文献   

3.
Sulfuretin is one of the major flavonoid components in Rhus verniciflua Stokes (Anacardiaceae) isolates. In this study, we investigated the protective effects of sulfuretin against tert-butyl hydroperoxide (t-BHP)-induced oxidative injury. The results indicated that the addition of sulfuretin before t-BHP treatment significantly inhibited cytotoxicity and reactive oxygen species (ROS) production in human liver-derived HepG2 cells. Sulfuretin up-regulated the activity of the antioxidant enzyme heme oxygenase (HO)-1 via nuclear factor E2-related factor 2 (Nrf2) translocation into the nucleus and increased the promoter activity of the antioxidant response element (ARE). Moreover, sulfuretin exposure enhanced the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2), which are members of the mitogen-activated protein kinase (MAPK) family. Furthermore, cell treatment with a JNK inhibitor (SP600125) and ERK inhibitor (PD98059) reduced sulfuretin-induced HO-1 expression and decreased its protective effects. Taken together, these results suggest that the protective effect of sulfuretin against t-BHP-induced oxidative damage in human liver-derived HepG2 cells is attributable to its ability to scavenge ROS and up-regulate the activity of HO-1 through the Nrf2/ARE and JNK/ERK signaling pathways. Therefore, sulfuretin could be advantageous as a bioactive source for the prevention of oxidative injury.  相似文献   

4.
5.
Hexavalent chromium (Cr(VI)) is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI) induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI) than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI)-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI) stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI)-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI) detoxification in mammalian cells.  相似文献   

6.
In the present study, we characterized the antioxidant and hepatoprotective mechanisms underlying of wild grape seed procyanidins (WGP) against oxidative stress damage in ethanol-treated HepG2 cell and Sprague-Dawley (SD)-rat models. In HepG2 cells, WGP not only diminished the ethanol (EtOH, 100 mM)-induced reactive oxygen species (ROS) formation and cytochrome P450 2E1 (CYP2E1) expression, but also renovated both the activity and expression of antioxidant enzymes including catalase, superoxide dismutase, and glutathione peroxidase. Additionally, to investigate the hepatoprotective effect of WGP, rats were orally administered 10 or 50 mg/kg WGP once daily for seven days prior to the single oral administration of EtOH (6 g/kg). The results show that WGP administration decreased the EtOH-induced augment of the levels of serum aspartate transaminase and alanine transaminase as well as serum alcohol and acetaldehyde. WGP treatment upregulated the activities and protein levels of hepatic alcohol dehydrogenase, aldehyde dehydrogenase, and antioxidant enzymes but downregulated the protein expression level of liver CYP2E1 in EtOH-treated rats. Moreover, the decreased phosphorylation levels of mitogen activated protein kinases (MAPKs) by ethanol were induced in both HepG2 cell and rat models. Overall, pretreatment of WGP displayed the protective activity against EtOH-mediated toxicity through the regulation of antioxidant enzymes and alcohol metabolism systems via MAPKs pathways.  相似文献   

7.
Growth Arrest and DNA Damage-inducible 45 (Gadd45) and MDM2 proteins, together with p21 and p53, play important roles in cell cycle checkpoints, DNA repair, and genome integrity maintenance. Gadd45 and MDM2 were activated and transcribed instantly by UV irradiation, whereas blueberry anthocyanins (BA) decreased the gene and protein expression levels in HepG2 cells for up to 24 h, and gradually restored the UV-induced fragmented and non-fragmented DNA damage of the nucleus at a time point of 12 h. Nevertheless, UV-irradiated HepG2 cell arrests occurred mainly in the G1 phase, which indicated G1 as a checkpoint. The proteins, p21 and p53, retain cellular integrity, suppressing the oncogenic transformation by interruption of the G1 phase of the cellular cycle, giving time for repairing the damage to DNA, or apoptosis induction if the damage is too severe to be repaired, while MDM2 and Gadd45 concomitantly ensure the presence of p53 and p21. Thus, we conclude that repair, together with Gadd45 and MDM2 genes, were involved in light and dark reaction mechanisms, however, BA could interfere and assist the repair through restoration, although further studies of the complex of the gene cascades triggered and responded to in BA-assisted DNA repair are needed.  相似文献   

8.
Titanium (IV)–dithiophenolate complex chitosan nanocomposites (DBT–CSNPs) are featured by their antibacterial activities, cytotoxicity, and capacity to bind with DNA helixes. In this study, their therapeutic effects against rat liver damage induced by carbon tetrachloride (CCl4) and their anti-proliferative activity against human liver cancer (HepG2) cell lines were determined. Results of treatment were compared with cisplatin treatment. Markers of apoptosis, oxidative stress, liver functions, and liver histopathology were determined. The results showed that DBT–CSNPs and DBT treatments abolished liver damage induced by CCl4 and improved liver architecture and functions. DNA fragmentation, Bax, and caspase-8 were reduced, but Bcl-2 and the Bcl-2/Bax ratios were increased. However, there was a non-significant change in the oxidative stress markers. DBT–CSNPs and DBT inhibited the proliferation of HepG2 cells by arresting cells in the G2/M phase and inducing cell death. DBT–CSNPs were more efficient than DBT. Low doses of DBT and DBT–CSNPs applied to healthy rats for 14 days had no adverse effect. DBT and DBT–CSNP treatment gave preferable results than the treatment with cisplatin. In conclusion, DBT–CSNPs and DBT have anti-apoptotic activities against liver injuries and have anti-neoplastic impacts. DBT–CSNPs are more efficient. Both compounds can be used in pharmacological fields.  相似文献   

9.
Connexin 26 (Cx26) is a protein that constitutes a gap junction and is widely expressed in the liver. Abnormal expression of Cx26 is one of the important mechanisms of liver cancer, and is closely related to the transmission of radiation damage signals between cells. In the present study, we investigated the radiosensitivity of hepatocellular carcinoma (HCC) cells HepG2, with low expression of Cx26, and SK-hep-1, with high expression of Cx26 after X-ray irradiation. The cell survival, micronucleus formation and protein expressions of the mitogen-activated protein kinases (MAPK) signaling pathway were detected. The expression level of Cx26 could affect the radiosensitivity of liver cancer cells by affecting the phosphorylation of p38 and ERK proteins and regulating the expression of downstream NF-κB. Cell lines with knock-out and overexpression of Cx26 were also built to confirm the findings. Our results suggested that Cx26 might play an important role in the radiosensitivity of liver cancer and could be a potential target for clinical radiotherapy of liver cancer.  相似文献   

10.
11.
In the present study, we examined the gastroprotective effect of selenium against ethanol-induced gastric mucosal lesions in rats. The gastric mucosal lesions were produced by oral administration with various concentrations of ethanol for three days, and 80% ethanol treatment was determined to be the optimal condition for induction of gastric damage. To identify the protective effect of selenium on ethanol-induced gastric damage, various doses of selenium were given as pretreatment for three days, and then gastric damage was induced by 80% ethanol treatment. Selenium showed a protective effect against ethanol-induced gastric mucosal lesions in a dose dependent manner. Specifically, 100 μg/kg selenium showed the highest level of gastroprotection. In addition, selenium markedly attenuated ethanol-induced lipid peroxidation in gastric mucosa and increased activities of radical scavenging enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase in a dose-dependent manner. Histological data showed that 100 μg/kg selenium distinctly reduced the depth and severity of the ethanol induced gastric lesion. These results clearly demonstrate that selenium inhibits the formation of ethanol-induced gastric mucosal lesions through prevention of lipid peroxidation and activation of enzymatic radical scavenging.  相似文献   

12.
In vitro mammalian cytogenetic tests detect chromosomal aberrations and are used for testing the genotoxicity of compounds. This study aimed to identify a supportive genomic biomarker could minimize the risk of misjudgments and aid appropriate decision making in genotoxicity testing. Human lymphoblastoid TK6 cells were treated with each of six DNA damage-inducing genotoxins (clastogens) or two genotoxins that do not cause DNA damage. Cells were exposed to each compound for 4 h, and gene expression was comprehensively examined using Affymetrix U133A microarrays. Toxicogenomic analysis revealed characteristic alterations in the expression of genes included in cyclin-dependent kinase inhibitor 1A (CDKN1A/p21)-centered network. The majority of genes included in this network were upregulated on treatment with DNA damage-inducing clastogens. The network, however, also included kinesin family member 20A (KIF20A) downregulated by treatment with all the DNA damage-inducing clastogens. Downregulation of KIF20A expression was successfully confirmed using additional DNA damage-inducing clastogens. Our analysis also demonstrated that nucleic acid constituents falsely downregulated the expression of KIF20A, possibly via p16 activation, independently of the CDKN1A signaling pathway. Our results indicate the potential of KIF20A as a supportive biomarker for clastogenicity judgment and possible mechanisms involved in KIF20A downregulation in DNA damage and non-DNA damage signaling networks.  相似文献   

13.
Fibroblast growth factor 21 (FGF21) functions as a polypeptide hormone to regulate glucose and lipid metabolism, and its expression is regulated by cellular metabolic stress. Pyruvate is an important intermediate metabolite that acts as a key hub for cellular fuel metabolism. However, the effect of pyruvate on hepatic FGF21 expression and secretion remains unknown. Herein, we examined the gene expression and protein levels of FGF21 in human hepatoma HepG2 cells and mouse AML12 hepatocytes in vitro, as well as in mice in vivo. In HepG2 and AML12 cells, pyruvate at concentrations above 0.1 mM significantly increased FGF21 expression and secretion. The increase in cellular cAMP levels by adenylyl cyclase activation, phosphodiesterase (PDE) inhibition and 8-Bromo-cAMP administration significantly restrained pyruvate-stimulated FGF21 expression. Pyruvate significantly increased PDE activities, reduced cAMP levels and decreased CREB phosphorylation. The inhibition of exchange protein directed activated by cAMP (Epac) and cAMP response element binding protein (CREB) upregulated FGF21 expression, upon which pyruvate no longer increased FGF21 expression. The increase in plasma pyruvate levels in mice induced by the intraperitoneal injection of pyruvate significantly increased FGF21 gene expression and PDE activity with a reduction in cAMP levels and CREB phosphorylation in the mouse liver compared with the control. In conclusion, pyruvate activates PDEs to reduce cAMP and then inhibits the cAMP–Epac–CREB signaling pathway to upregulate FGF21 expression in hepatocytes.  相似文献   

14.
Non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac (DIC) frequently induce drug-induced liver injury (DILI). It is unclear whether macrophages such as M1 and M2 participate in NSAID-associated DILI; elucidating this relationship could lead to a better understanding of the detailed mechanism of DILI. We co-cultured human hepatoma HepG2 cells with M1 or M2 derived from human monocytic leukemia THP-1 cells to examine the roles of M1 and M2 in DIC-induced cytotoxicity. DIC was added to the direct or indirect co-cultures of HepG2 cells with M1 or M2 (HepG2/M1 or HepG2/M2, respectively) at cell ratios of (1:0, 1:0.1, 1:0.4, and 1:1). In both direct and indirect HepG2/M2 co-cultures (1:0.4), there was lower lactate dehydrogenase release compared with HepG2/M1 co-cultures. Other NSAIDs as well as DIC showed similar protective effects of DIC-induced cytotoxicity. There were only slight differences in mRNA levels of apoptosis- and endoplasmic reticulum stress-associated factors between M1 and M2 after DIC treatment, suggesting that other factors determined the protective effects of M2 on DIC-induced cytotoxicity. Levels of high mobility group box 1 (HMGB1) in the medium and the mRNA expression levels of HMGB1 receptors were different between M1 and M2 after DIC treatment. Increased HMGB1 concentrations and expression of toll-like receptor 2 mRNA in M1 were observed compared with M2 after DIC treatment. In conclusion, these results suggested that the HMGB1/TLR2 signaling axis can be suppressed in M2 but not M1, leading to the different roles of M1 and M2 in NSAID-induced cytotoxicity.  相似文献   

15.
Transmembrane 4 superfamily member 1 (TM4SF1) is a member of tetraspanin family, which mediates signal transduction events regulating cell development, activation, growth and motility. Our previous studies showed that TM4SF1 is highly expressed in liver cancer. HepG2 cells were transfected with TM4SFl siRNA and TM4SF1-expressing plasmids and their biological functions were analyzed in vitro and in vivo. HepG2 cells overexpressing TM4SF1 showed reduced apoptosis and increased cell migration in vitro and enhanced tumor growth and metastasis in vivo, whereas siRNA-mediated silencing of TM4SF1 had the opposite effect. TM4SF1 exerts its effect by regulating a few apoptosis- and migration-related genes including caspase-3, caspase-9, MMP-2, MMP-9 and VEGF. These results indicate that TM4SF1 is associated with liver tumor growth and progression, suggesting that TM4SF1 may be a potential target for treatment of liver cancer in future.  相似文献   

16.
Hypoxia-induced neuroinflammation in stroke, neonatal hypoxic encephalopathy, and other diseases subsequently contributes to neurological damage and neuronal diseases. Microglia are the primary neuroimmune cells that play a crucial role in cerebral inflammation. Epigallocatechin gallate (EGCG) has a protective antioxidant and anti-inflammatory effects against neuroinflammation. However, the effects of EGCG on hypoxia-induced inflammation in microglia and the underlying mechanism remain unclear. In this study, we investigated whether EGCG might have a protective effect against hypoxia injury in microglia by treatment with CoCl2 to establish a hypoxic model of BV2 microglia cells following EGCG pre-treatment. An exposure of cells to CoCl2 caused an increase in inflammatory mediator interleukin (IL)-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 expression, which were significantly ameliorated by EGCG via inhibition of NF-κB pathway. In addition, EGCG attenuated the expression of hypoxia-inducible factor (HIF)-1α and the generation of ROS in hypoxic BV2 cells. Furthermore, the suppression of hypoxia-induced IL-6 production by EGCG was mediated via the inhibition of HIF-1α expression and the suppression of ROS generation in BV2 cells. Notably, EGCG increased the Nrf-2 levels and HO-1 levels in the presence of CoCl2. Additionally, EGCG suppressed hypoxia-induced apoptosis of BV2 microglia with cleavage of poly (ADP-ribose) polymerase (PARP) and caspase-3. In summary, EGCG protects microglia from hypoxia-induced inflammation and oxidative stress via abrogating the NF-κB pathway as well as activating the Nrf-2/HO-1 pathway.  相似文献   

17.
Liver cancer is the sixth most common cancer worldwide with high morbidity and mortality. Programmed death ligand 1 (PD-L1) is a major ligand of programmed death 1 receptor (PD1), and PD1/PD-L1 checkpoint acts as a negative regulator of the immune system. Cancers evade the host’s immune defense via PD-L1 expression. This study aimed to investigate the effects of tumor-related cytokines, interferon gamma (IFNγ), and tumor necrosis factor alpha (TNFα) on PD-L1 expression in human hepatocellular carcinoma cells, HepG2. Furthermore, as atorvastatin, a cholesterol-lowering agent, is documented for its immunomodulatory properties, its effect on PD-L1 expression was investigated. In this study, through real-time RT-PCR, Western blot, and immunocytochemistry methods, PD-L1 expression in both mRNA and protein levels was found to be synergistically upregulated in HepG2 by a combination of IFNγ and TNFα, and STAT1 activation was mainly responsible for that synergistic effect. Next, atorvastatin can inhibit the induction of PD-L1 by either IFNγ alone or IFNγ/TNFα combination treatment in HepG2 cells. In conclusion, in HepG2 cells, expression of PD-L1 was augmented by cytokines in the tumor microenvironment, and the effect of atorvastatin on tumor immune response through inhibition of PD-L1 induction should be taken into consideration in cancer patients who have been prescribed atorvastatin.  相似文献   

18.
The total phenolic content, total flavonoid content, vitamin C content, and antioxidant activities of ethanol extracts from different kiwifruit varieties (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) were determined in this study. Multiple scavenging activity assays including the hydroxyl radical, O(2) (-)·radical, DPPH, and the ABTS(+) radical scavenging activity assays were used to identify the antioxidant activities of Actinidia extracts. The cell viability of HepG2 and HT-29 cells was also examined in this study. The results demonstrated that the Actinidia kolomikta extract had a higher antioxidant activity than the other two Actinidia extracts. There is a positive correlation between antioxidant activity and the polyphenols and vitamin C content in all three extracts (R(2) ≥ 0.712, p < 0.05). The Actinidia arguta extract had the highest inhibitory effect on HepG2 and HT-29 cell growth. These results provide new insight into the health functions of fruit and demonstrate that Actinidia extracts can potentially have health benefits.  相似文献   

19.
20.
Background: Many microRNAs have been identified as critical mediators in the progression of melanoma through its regulation of genes involved in different cellular processes such as melanogenesis, cell cycle control, and senescence. However, microRNAs’ concurrent participation in syngeneic mouse B16F1 melanoma cells simultaneously induced decreased proliferation and differential pigmentation by exposure to 5-Brd-2′-dU (5’Bromo-2-deoxyuridine) and L-Tyr (L-Tyrosine) respectively, is poorly understood. Aim: To evaluate changes in the expression of microRNAs and identify which miRNAs in-network may contribute to the functional bases of phenotypes of differential pigmentation and reduction of proliferation in B16F1 melanoma cells exposed to 5-Brd-2′-dU and L-Tyr. Methods: Small RNAseq evaluation of the expression profiles of miRNAs in B16F1 melanoma cells exposed to 5-Brd-2′-dU (2.5 μg/mL) and L-Tyr (5 mM), as well as the expression by qRT-PCR of some molecular targets related to melanogenesis, cell cycle, and senescence. By bioinformatic analysis, we constructed network models of regulation and co-expression of microRNAs. Results: We confirmed that stimulation or repression of melanogenesis with L-Tyr or 5-Brd-2′-dU, respectively, generated changes in melanin concentration, reduction in proliferation, and changes in expression of microRNAs 470-3p, 470-5p, 30d-5p, 129-5p, 148b-3p, 27b-3p, and 211-5p, which presented patterns of coordinated and reciprocal co-expression, related to changes in melanogenesis through their putative targets Mitf, Tyr and Tyrp1, and control of cell cycle and senescence: Cyclin D1, Cdk2, Cdk4, p21, and p27. Conclusions: These findings provide insights into the molecular biology of melanoma of the way miRNAs are coordinated and reciprocal expression that may operate in a network as molecular bases for understanding changes in pigmentation and decreased proliferation induced in B16F1 melanoma cells exposed to L-Tyr and 5-Brd-2′-dU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号