首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
This paper presents a scheme for the efficient implementation of a low supply voltage continuous-time high-performance CMOS current mirror with low input and output voltage requirements. This circuit combines a shunt input feedback and a regulated cascode output stage to achieve low input resistance and very high output resistance. It can be used as a high-precision current mirror in analog and mixed signal circuits with a power supply close to a transistor's threshold voltage. The proposed current mirror has been simulated and a bandwidth of 40 MHz has been obtained. An experimental chip prototype has been sent for fabrication and has been experimentally verified, obtaining 0.15-V input-output voltage requirements, 100-/spl Omega/ input resistance, and more than 200-M/spl Omega/ (G/spl Omega/ ideally) output resistance with a 1.2-V supply in a standard CMOS technology.  相似文献   

2.
This paper presents the design of an optical receiver analog front-end circuit capable of operating at 2.5 Gbit/s. Fabricated in a low-cost 0.35-/spl mu/m digital CMOS process, this integrated circuit integrates both transimpedance amplifier and post limiting amplifier on a single chip. In order to facilitate high-speed operations in a low-cost CMOS technology, the receiver front-end has been designed utilizing several enhanced bandwidth techniques, including inductive peaking and current injection. Moreover, a power optimization methodology for a multistage wide band amplifier has been proposed. The measured input-referred noise of the optical receiver is about 0.8 /spl mu/A/sub rms/. The input sensitivity of the receiver front-end is 16 /spl mu/A for 2.5-Gbps operation with bit-error rate less than 10/sup -12/, and the output swing is about 250 mV (single-ended). The front-end circuit drains a total current of 33 mA from a 3-V supply. Chip size is 1650 /spl mu/m/spl times/1500 /spl mu/m.  相似文献   

3.
A CMOS operational amplifier (OPAMP) for use as a line driver for high-speed T1/E1 data communication link is described. The differential output swing, using a single 3.3-V power supply, is 5.2-V peak-to-peak on a 20-/spl Omega/ load. Novel circuits are used to control the closed-loop output impedance, quiescent bias current, and frequency compensation to ensure stable operation over varying temperature and load conditions. A special circuitry tristates the output in case of power-supply failure. The OPAMP achieves a unity-gain bandwidth of 35 MHz with only 10 mA of quiescent current. A new output-current-sense circuitry is used to provide a current feedback to adjust the output impedance for proper line termination as well as to provide short-circuit protection from excessive output currents. Using 0.35-/spl mu/m n-well CMOS technology, the amplifier occupies 0.69 mm/sup 2/ of area.  相似文献   

4.
A five-terminal /spl plusmn/15-V monolithic voltage regulator has been developed that incorporates internal frequency compensation and internally provides a /spl plusmn/1 percent output voltage tolerance. In addition, a thermally symmetric layout design of the chip has been used to eliminate the detrimental effects of thermal feedback on the die and ensure that the complementary tracking output voltages will be independent of the power dissipation in the series pass power transistors. Complete fault protection is accomplished by providing the power transistors with good dc safe operating area, internally limiting the short circuit output currents, and accurately limiting the junction temperature to within 10/spl deg/C of the specified maximum limit. Also, a new Zener diode geometry is employed that significantly reduces the noise associated with the reference voltage.  相似文献   

5.
An ADSL central office (CO) line driver utilizing a single 6-V supply is described. The line driver output produces a 20-V/sub ppd/ signal to deliver a 40-V/sub ppd/ swing to a 100-/spl Omega/ line. The adoption of an active termination, a dynamic supply control circuit technique, and deep n-well devices at the output stage of the line driver is key in achieving such a large voltage swing in a 0.25-/spl mu/m CMOS process. In order to ensure reliability of the output devices, the dynamic supply control algorithm is designed to activate only one lift amplifier at each signal path of the differential line driver at any given time. A transformer turns ratio of 1:2.4 ensures both reliability and optimal power dissipation in the presence of system losses. The total power dissipation of the line driver is 700 mW when discrete multitone signals with a crest factor of 15 dB were used to deliver 20.4 dBm to a 100-/spl Omega/ line.  相似文献   

6.
This paper presents the implementation of a built-in current sensor for /spl Delta/I/sub DDQ/ testing. In contrast to conventional built-in current monitors, this implementation has three distinctive features: 1) built-in self-calibration to the process corner in which the circuit under test was fabricated; 2) digital encoding of the quiescent current of the circuit under test for robustness purposes; and 3) enabling versatile testing strategy through the implementation of two advanced /spl Delta/I/sub DDQ/ testing algorithms. The monitor has been manufactured in a 0.18-/spl mu/m CMOS technology and it is based on the principle of disconnecting the device under test from the power supply during the testing phase. The monitor has a resolution of 1 /spl mu/A for a background current less than 100 /spl mu/A or 1% of background currents over 100 /spl mu/A to a total of 1-mA full scale. The sensor operates at a maximum clock speed of 250 MHz. The quiescent current is indirectly determined by counting a number of clock pulses which occur during the time the voltage at the disconnected node drops below a reference voltage value. Basically, at the end of the count period, the counted value is inversely proportional to the quiescent current of the device under test. Then, a /spl Delta/I/sub DDQ/ unit processes the counted number and the outcome is compared with a reference number to determine whether a defect exists in the device under test. Accuracy is improved by adjusting the value of the reference number and the frequency of the clock signal depending upon the particular process corner of the circuit under test. The monitor has been verified in a test chip consisting of one "DSP-like" circuit of about 250,000 transistors. Experimental results prove the usefulness of our approach as a quick and effective means for detecting defects.  相似文献   

7.
Three novel complementary folded-cascode operational amplifiers (opamps) with high gain, large bandwidth, and rail-to-rail input range for low-voltage operation will be presented. These opamps feature high bandwidth due to minimum internal nodes. The output swing is increased by properly adjusting the output cascode transistor gate voltages close to the power supply voltages. The opamps have been fabricated with a standard 0.8-/spl mu/m CMOS technology. Measurements show the amplification is between 60.1 and 72.4 dB, and the unity gain bandwidth is 14 MHz for a 5-pF load, 2.5-V power supply, and 150-/spl mu/A bias current.  相似文献   

8.
This paper presents the design and measured performance of a 1.8-GHz power amplifier featuring load mismatch protection and soft-slope power control. Load-mismatch-induced breakdown can be avoided by attenuating the RF power to the final stage during overvoltage conditions. This was accomplished by means of a feedback control system, which detects the peak voltage at the output collector node and clamps its value to a given threshold by varying the circuit gain. The issue of output power control has been addressed as well. To this end, a temperature-compensated bias network is proposed, which allows a moderate power control slope (dB/V) to be achieved by varying the circuit quiescent current according to an exponential law. The nonlinear power amplifier was fabricated using a low-cost silicon bipolar process with a 6.4-V breakdown voltage. It delivers a 33.5-dBm saturated output power with 46% maximum power-added efficiency and 36-dB gain at a nominal 3.5-V supply voltage. The device is able to tolerate a 10:1 load standing-wave ratio up to a 5.1-V supply voltage. Power control slope is lower than 80 dB/V between -15 dBm and the saturated output power level.  相似文献   

9.
A high-gain, 43-Gb/s InP HBT transimpedance-limiting amplifier (TIALA) with 100-/spl mu/A/sub pp/ sensitivity and 6 mA/sub pp/ input overload current is presented. The circuit also operates as a limiting amplifier with 40-dB differential gain, better than 15-dB input return loss, and a record-breaking sensitivity of 8 mV/sub pp/ at 43 Gb/s. It features a differential TIA stage with inductive noise suppression in the feedback network and consumes less than 450mW from a single 3.3-V supply. The TIALA has 6-k/spl Omega/ (76dB/spl Omega/) differential transimpedance gain and 35-GHz bandwidth and comprises the transimpedance and limiting gain functions, an auto-zero dc feedback circuit, signal level monitor, and slicing level adjust functions. Other important features include 45-dB isolation and 800-mV/sub pp/ differential output.  相似文献   

10.
An improved voltage multiplier technique has been developed for generating +40 V internally in p-channel MNOS integrated circuits to enable them to be operated from standard +5- and -12-V supply rails. With this technique, the multiplication efficiency and current driving capability are both independent of the number of multiplier stages. A mathematical model and simple equivalent circuit have been developed for the multiplier and the predicted performance agrees well with measured results. A multiplier has already been incorporated into a TTL compatible nonvolatile quad-latch, in which it occupies a chip area of 600 /spl mu/m/spl times/240 /spl mu/m. It is operated with a clock frequency of 1 MHz and can supply a maximum load current of about 10 /spl mu/A. The output impedance is 3.2 M/spl Omega/.  相似文献   

11.
A 402-output thin-film-transistor liquid crystal display (TFT-LCD) driver integrated circuit (IC) with power control based on the number of colors to be displayed is described. To achieve this type of power control, reference voltage buffers are turned on and off according to the selected number of colors. In this architecture, the reference voltage buffers must drive 1-402 capacitive loads, corresponding to a capacitance of 30-12000 pF. Phase compensation using a zero formed with capacitive loads is proposed for the reference voltage buffers. The introduced zero has a fixed zero frequency for 1-402 loads. An operational amplifier with slew-rate enhancement is also proposed for the buffers. An experimental 402-output TFT-LCD driver IC was fabricated using a 0.6-/spl mu/m CMOS technology. The chip size was 2.35 mm /spl times/ 18.1 mm. The quiescent current dissipation of the analog section including decoders was 529 /spl mu/A for 262144 colors, 182 /spl mu/A for 4096 colors, and 112 /spl mu/A for 512 colors for a 5-V supply.  相似文献   

12.
A precision operational amplifier is described which draws 12 /spl mu/A of quiescent current and can operate from a 1.6-V supply while requiring no external components such as the usual biasing resistor. The amplifier has DC characteristics comparable to the industry standard OP-07 and AC characteristics as good as currently available micropower devices. The circuit has an input voltage range and an output swing which include the negative supply to facilitate its use in battery-powered and other single-supply applications.  相似文献   

13.
A low-voltage 10-bit digital-to-analog converter (DAC) for static/dc operation is fabricated in a standard 0.18-/spl mu/m CMOS process. The DAC is optimized for large integrated circuit systems where possibly dozens of such DAC would be employed for the purpose of digitally controlled analog circuit calibration. The DAC occupies 110 /spl mu/m/spl times/94 /spl mu/m die area. A segmented R-2R architecture is used for the DAC core in order to maximize matching accuracy for a minimal use of die area. A pseudocommon centroid layout is introduced to overcome the layout restrictions of conventional common centroid techniques. A linear current mirror is proposed in order to achieve linear output current with reduced voltage headroom. The measured differential nonlinearity by integral nonlinearity (DNL/INL) is better than 0.7/0.75 LSB and 0.8/2 LSB for 1.8-V and 1.4-V power supplies, respectively. The DAC remains monotonic (|DNL|<1 LSB) as INL reaches 4 LSB down to 1.3-V operation. The DAC consumes 2.2 mA of current at all supply voltage settings.  相似文献   

14.
A high-performance current amplifier is proposed which is based on a folded-cascode transresistance amplifier and a low-distortion class AB current output stage. The loop gain of the transresistance amplifier exhibits a gain bandwidth product of 10 MHz and a DC gain as high as 100 dB which allows accurate closed-loop operations to be achieved. Despite the intrinsic low-linearity performance of current amplifiers with respect to their voltage amplifier counterpart, the proposed circuit provides an output current of 7 mA with a total harmonic distortion (THD) better than -55 dB while requiring only 200 μA of quiescent current for the output transistors. The circuit was fabricated in a 1.2 μm CMOS process, uses a 5 V power supply, and dissipates 4 mW  相似文献   

15.
This paper describes circuit design and measurement results of our newly developed InGaP/GaAs-HBT MMIC power amplifier (PA) module which can operate with 2.4-V low reference and low supply voltages of its on-chip bias circuits. To achieve the low-reference voltage operation, the following two new circuit design techniques are incorporated into the power amplifier: 1) AC-coupled, divided power stage configuration with two different kinds of bias feeding (voltage and current drive and only current drive) and 2) successful implementation of a diode linearizer built in the power stage. Theses two techniques allow the PA to offer smooth output transfer characteristics over a wide temperature range. Measurement results done under the conditions of 900 MHz, a 3.5-V collector voltage for power stage, and 2.4-V reference and collector voltages for the bias circuits show that the PA module meets J-/W-CDMA power and distortion requirements sufficiently over a wide temperature range from -10degC to 90degC while keeping a low quiescent current of less than 65 mA. For J-CDMA modulation, the module can deliver a 27.5-dBm output power (Pout), a 40% PAE, and a -50-dBc ACPR, while a 28-dBm Pout, a 42% PAE, and a -42-dBc ACLR are achieved for W-CDMA modulation.  相似文献   

16.
In this paper, a new CMOS high-performance electronically tunable second-generation current conveyor (ECCII) is presented. The current gain of the proposed ECCII can be controlled electronically by adjusting the ratio of dc bias currents of the ECCII. The output terminal of the proposed ECCII has high impedance, which enables easy cascadability. Also, as an application, the proposed ECCII is used for realizing a universal current-mode filter. The filter realizes low-pass, bandpass, and high-pass responses simultaneously. The low-pass response is obtained at high impedance output and its gain can be independently tuned by changing the current gain of the relevant CC. SPICE simulation results using TSMC 0.35-/spl mu/m CMOS process model shows excellent performance for the proposed ECCII. The proposed circuit consumes average power of 6.6 mW using /spl plusmn/1.5-V supply voltages.  相似文献   

17.
A new operational transconductance amplifier and capacitor based sinusoidal voltage controlled oscillator is presented. The transconductor uses two cross-coupled class-AB pseudo-differential pairs biased by a flipped voltage follower, and it exhibits a wide transconductance range with low power consumption and high linearity. The oscillator has been fabricated in a standard 0.8-/spl mu/m CMOS process. Experimental results show a frequency tuning range from 1 to 25 MHz. The amplitude is controlled by the transconductor nonlinear characteristic. The circuit is operated at 2-V supply voltage with only 1.58 mW of maximum quiescent power consumption.  相似文献   

18.
A high-performance CMOS line driver for ISDN U-interface transceiver applications has been designed and fabricated. Careful study of requirements and trade-offs affecting linearity, power efficiency, and quiescent current presented in this work has resulted in a circuit structure featuring a highly linear input/output characteristic and well-controlled quiescent current. The prototype line driver is capable of delivering a 5-Vpp signal of up tp 80 kHz to a 60-Ω load while exhibiting linearity on the order of 77 ± 5 dB and operating from a single 5-V power supply. Linearity better than 70 dB is maintained for load resistances as low as 20 Ω  相似文献   

19.
A miniaturized Wilkinson power divider with CMOS active inductors   总被引:1,自引:0,他引:1  
A miniaturized Wilkinson power divider implemented in a standard 0.18-/spl mu/m CMOS process is presented in this letter. By using active inductors for the circuit implementation, a significant area reduction can be achieved due to the absence of distributed components and spiral inductors. The power divider is designed at a center frequency of 4.5GHz for equal power dividing with all ports matched to 50/spl Omega/. Drawing a dc current of 9.3mA from a 1.8-V supply voltage, the fabricated circuit exhibits an insertion loss less than 0.16dB and a return loss better than 30dB at the center frequency while maintaining good isolation between the output ports. The active area of the miniaturized Wilkinson power divider is 150/spl times/100/spl mu/m/sup 2/, which is suitable for system integration in monolithic microwave integrated circuit (MMIC) applications.  相似文献   

20.
A high-speed driving scheme and a compact high-speed low-power rail-to-rail class-B buffer amplifier, which are suitable for small- and large-size liquid crystal display applications, are proposed. The driving scheme incorporates two output driving stages in which the output of the first output driving stage is connected to the inverting input and that of the second driving stage is connected to the capacitive load. A compensation resistor is connected between the two output stages for stability. The second output stage is used to improve the slew rate and the settling time. The buffer draws little current while static but has a large driving capability while transient. The circuit achieves the large driving capability by employing simple comparators to sense the transients of the input to turn on the output stages, which are statically off in the stable state. This increases the speed of the circuit without increasing static power consumption too much. A rail-to-rail folded-cascode differential amplifier is used to amplify the input signal difference and supply the bias voltages for the second stage. An experimental prototype output buffer implemented in a 0.35-/spl mu/m CMOS technology demonstrates that the circuit draws only 7-/spl mu/A static current and exhibits the settling times of 2.7 /spl mu/s for rising and 2.9 /spl mu/s for falling edges for a voltage swing of 3.3 V under a 600-pF capacitance load with a power supply of 3.3 V. The active area of this buffer is only 46.5/spl times/57/spl mu/m/sup 2/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号