首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The focus is a detailed examination of energy production, including a discussion of the capacity value of photovoltaic (PV) systems in New England. Data are presented on the customer demand reduction potential of roof-mounted residential PV systems. It is shown that these systems can contribute, on average, 63% of their normalized capacity (1.8 kW) during 6-h peak load periods. The range of output is 34% to 80% during these periods. Reverse energy flow (customer to utility) from residential PV systems has been analyzed. The data indicate nonzero reverse energy flow for almost all participants in summer, and high amounts (approximately 50%) for one group of participants. The commercial and institutional PV systems generally operate in a more hostile electrical environment. In consequence, they have required more attention to maintain operating status and metering accuracy  相似文献   

2.
A. Zahedi   《Renewable Energy》2006,31(5):711-718
Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies.The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500 MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising.The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply.  相似文献   

3.
Most of the world’s energy consumption is greatly dependent on fossil fuel, which is exhaustible and is being used extensively due to continuous escalation in the world’s population and development. This valuable resource needs to be conserved and its alternatives need to be explored. In this perspective, dissemination and utilisation of renewables such as solar energy has gained worldwide momentum since the onset of oil crises of 1970s. Moreover, burning of fuels is the principal cause of air pollution, and possibly environmental warming. Saudi Arabia, being blessed with a fairly high level of solar radiation, is a suitable candidate for deployment of solar photo-voltaic (PV) panels for power generation during crisis. Literature indicates that commercial/residential buildings in Saudi Arabia consume an estimated 10–45% of the total electrical energy generated/consumed. In the present study, hourly mean solar radiation data for the period 1986–1993 recorded at the solar radiation and meteorological monitoring station, Dhahran (26° 32′ N, 50° 13′ E), Saudi Arabia, have been analyzed to investigate the potential of utilizing hybrid (PV+diesel) power systems to meet the load requirements of a typical commercial building (with an annual electrical energy demand of 620,000 kWh). The monthly average daily solar global irradiation for Dhahran ranges from 3.61 to 7.96 kWh/m2. The hybrid systems considered in the present analysis consist of different combinations of PV panels/modules (different array sizes) supplemented with a battery storage unit and diesel back-up. The study shows that with a combination of 3700 m2 PV together with 12 h of battery storage, the diesel back-up system has to provide 6% of the load demand. However, in the absence of a battery bank, about 56% of the load needs to be provided by the diesel system.  相似文献   

4.
Using a panel database for 27 programs in 16 U.S. states over 1998–2009, we assess the impact of 12 state-level policies on the cost and deployment of solar photovoltaic (PV) technologies for two sectors defined by system sizes: residential (<10 kW) and commercial (10−100 kW). We first examine the impact of policies on the deployment of solar PV. We show that cash incentives increase the deployment of commercial systems. We also show that interconnection standards potentially promote the deployment of residential systems, whereas property tax incentives potentially foster the deployment of commercial systems. We next examine the impact of policies on the cost of solar PV, and show that the key policies have different effects on costs. The cost of residential systems declines faster if there are cash or property tax incentives in place, whereas the presence of interconnection standards potentially accelerates the decline in commercial system costs. Further, states with a renewable portfolio standard see residential system costs potentially declining slower than states without such a policy. As solar PV is at the brink of becoming cost competitive, our findings assist regulators in fine-tuning their set of support tools.  相似文献   

5.
In the wake of rising cost of oil and fears of its exhaustion coupled with increased pollution, the governments world-wide are deliberating and making huge strides to promote renewable energy sources such as solar–photovoltaic (solar–PV) and wind energy. Integration of diesel systems with hybrid wind–PV systems is pursued widely to reduce dependence on fossil-fuel produced energy and to reduce the release of carbon gases that cause global climate change. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (KSA) consume an estimated 10–40% of the total electric energy generated. The study reviews research work carried out world-wide on wind farms and solar parks. The work also analyzes wind speed and solar radiation data of East-Coast (Dhahran), KSA, to assess the technical and economic potential of wind farm and solar PV park (hybrid wind–PV–diesel power systems) to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The monthly average daily solar global radiation ranges from 3.61 to 7.96 kWh/m2. The hybrid systems simulated consist of different combinations of 100 kW wind machines, PV panels, supplemented by diesel generators. NREL (and HOMER Energy's) HOMER software has been used to perform the techno-economic study. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity (37 m hub-height) and 40 kW of PV capacity together with 175 kW diesel system, the renewable energy fraction (with 0% annual capacity shortage) is 36% (24% wind + 12% PV). The cost of generating energy (COE, $/kWh) from this hybrid wind–PV–diesel system has been found to be 0.154 $/kWh (assuming diesel fuel price of 0.1$/L). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel generators decreases with increase in wind farm and PV capacity. Attention has also been focused on wind/PV penetration, un-met load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind–PV–diesel systems, COE of different hybrid systems, etc.  相似文献   

6.
In the development of energy sources in rural regions in Egypt at the brink of the 21st century, it is necessary to view the use of solar energy in all applications as one of the most promising new and renewable energy sources. This paper presents a study and design of a complete photovoltaic system for providing the electrical loads in a family house according to their energy requirements. A computer program is developed to achieve this and to determine the specifications of photovoltaic (PV) system components. It uses the solar energy data of the selected rural zone and all the required information about the electrical loads. Also, the effects of solar intensity variations and surface temperature variations on the amount of power provided by the PV panels are taken into consideration. It is found that providing electricity to a family house in a rural zone using PV systems is very beneficial and competitive with the other types of conventional energy sources, especially considering the decreasing prices of these systems and their increasing efficiencies and reliability. They have also the advantage of maintaining a clean environment.  相似文献   

7.
Photovoltaic systems provide one of the best options to generate energy in Hawaii, a state that is more than 90 percent dependent on imported oil for its energy supply. Hawaii's excellent year-round insolation rates will contribute to the success of solar energy projects. The Hawaii Natural Energy Institute's program to accelerate utilization of PV power in Hawaii has thus far consisted of a continuation of a 50-year data base of solar insolation; an experimental program with grid-connected residential PV systems; and public information dissemination on PV technology and performance. HNEI is now developing a program that includes: (1) compiling a solar data base that includes a full solar resource assessment, with spectral analysis and measurement of direct insolation, (2) tests of various PV devices relative to insolation; (3) test and evaluation of contemporary PV powered systems (e.g. water pumping, refrigeration, communication and stand-alone residential applications) under various tropical island conditions; and (4) a technology transfer effort aimed at Hawaii and other Pacific Basin islands, including cost-benefit and market analyses.  相似文献   

8.
Hybrid photovoltaic/thermal solar systems   总被引:1,自引:0,他引:1  
We present test results on hybrid solar systems, consisting of photovoltaic modules and thermal collectors (hybrid PV/T systems). The solar radiation increases the temperature of PV modules, resulting in a drop of their electrical efficiency. By proper circulation of a fluid with low inlet temperature, heat is extracted from the PV modules keeping the electrical efficiency at satisfactory values. The extracted thermal energy can be used in several ways, increasing the total energy output of the system. Hybrid PV/T systems can be applied mainly in buildings for the production of electricity and heat and are suitable for PV applications under high values of solar radiation and ambient temperature. Hybrid PV/T experimental models based on commercial PV modules of typical size are described and outdoor test results of the systems are presented and discussed. The results showed that PV cooling can increase the electrical efficiency of PV modules, increasing the total efficiency of the systems. Improvement of the system performance can be achieved by the use of an additional glazing to increase thermal output, a booster diffuse reflector to increase electrical and thermal output, or both, giving flexibility in system design.  相似文献   

9.
文章利用TRNSYS动态模拟软件研究了在我国不同建筑气候带条件下,不同类型的太阳能PV/T集热系统和普通太阳能PT集热系统的各项性能.其中,太阳能PV/T集热系统分为基于普通玻璃型太阳能PV/T集热系统和基于Low-e型太阳能PV/T集热系统.文章探究了基于普通玻璃型太阳能PV/T集热系统和基于Low-e型太阳能PV/...  相似文献   

10.
Renewable energy sources have been taken the place of the traditional energy sources and especially rapidly developments of photovoltaic (PV) technology and fuel cell (FC) technology have been put forward these renewable energy sources (RES) in all other RES. PV systems have been started to be used widely in domestic applications connected to electrical grid and grid connected PV power generating systems have become widespread all around the world. On the other hand, fuel cell power generating systems have been used to support the PV generating so hybrid generation systems consist of PV and fuel cell technology are investigated for power generating. In this study, a grid connected fuel cell and PV hybrid power generating system was developed with Matlab Simulink. 160 Wp solar module was developed based on solar module temperature and solar irradiation by using real data sheet of a commercial PV module and then by using these modules 800 Wp PV generator was obtained. Output current and voltage of PV system was used for input of DC/DC boost converter and its output was used for the input of the inverter. PV system was connected to the grid and designed 5 kW solid oxide fuel cell (SOFC) system was used for supporting the DC bus of the hybrid power generating system. All results obtained from the simulated hybrid power system were explained in the paper. Proposed model was designed as modular so designing and simulating grid connected SOFC and PV systems can be developed easily thanks to flexible design.  相似文献   

11.
Depleting oil and gas reserves, combined with growing concerns of atmospheric pollution/degradation, have made the search for energy from renewable sources of energy, such as solar and wind, inevitable. Literature indicates that commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present study, hourly mean wind-speed and solar radiation data for the period 1986–1997 recorded at the solar radiation and meteorological monitoring station, Dhahran (26°32′ N, 50°13′ E), Saudi Arabia, have been analyzed to investigate the potential of utilizing hybrid (wind+solar) energy conversion systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620 000 kWh). The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The monthly average daily values of solar radiation for Dhahran range from 3.6 kWh/m2 to 7.96 kWh/m2. The hybrid systems considered in the present analysis consist of different combinations of commercial 10 kW wind energy conversion systems (WECS), photovoltaic (PV) panels supplemented with battery storage unit and diesel back-up. The study shows that with 30 10-kW WECS together with 150 m2 PV, and 3 days of battery storage, the diesel back-up system has to provide 17% of the load demand. However, in the absence of battery storage, about 38% of the load needs to be provided by the diesel system.  相似文献   

12.
Depleting oil and gas reserves, combined with the growing concerns of global warming, have made it inevitable to seek alternative/renewable energy sources. The integration of renewables such as solar and wind energy is becoming increasingly attractive and is being used widely, for substitution of oil-produced energy, and eventually to minimize atmospheric degradation. The literature shows that commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present investigation, hourly wind-speed and solar radiation measurements made at the solar radiation and meteorological monitoring station, Dhahran (26°32′ N, 50°13′ E), Saudi Arabia, have been analyzed to investigate the feasibility of using hybrid (wind+solar+diesel) energy conversion systems at Dhahran to meet the energy needs of twenty 2-bedroom houses. The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The monthly average daily values of solar radiation for Dhahran range from 3.6 kWh/m2 to 7.96 kWh/m2. The performance of hybrid systems consisting of different rated power wind farms, photovoltaic (PV) areas, and storage capacities together with a diesel back-up are presented. The monthly average daily energy generated from the above hybrid system configuration has been presented. The deficit energy generated from the back-up diesel generator and the number of operational hours of the diesel system to meet a specific annual electrical energy demand of 702,358 kWh have also been presented.  相似文献   

13.
Solar photovoltaic (PV) hybrid system technology is a hot topic for R&D since it promises lot of challenges and opportunities for developed and developing countries. The Kingdom of Saudi Arabia (KSA) being endowed with fairly high degree of solar radiation is a potential candidate for deployment of PV systems for power generation. Literature indicates that commercial/residential buildings in KSA consume an estimated 10–45% of the total electric energy generated. In the present study, solar radiation data of Dhahran (East-Coast, KSA) have been analyzed to assess the techno-economic viability of utilizing hybrid PV–diesel–battery power systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kW h). The monthly average daily solar global radiation ranges from 3.61 to 7.96 kW h/m2. NREL's HOMER software has been used to carry out the techno-economic viability. The simulation results indicate that for a hybrid system comprising of 80 kWp PV system together with 175 kW diesel system and a battery storage of 3 h of autonomy (equivalent to 3 h of average load), the PV penetration is 26%. The cost of generating energy (COE, US$/kW h) from the above hybrid system has been found to be 0.149 $/kW h (assuming diesel fuel price of 0.1 $/L). The study exhibits that for a given hybrid configuration, the operational hours of diesel generators decrease with increase in PV capacity. The investigation also examines the effect of PV/battery penetration on COE, operational hours of diesel gensets for a given hybrid system. Emphasis has also been placed on unmet load, excess electricity generation, percentage fuel savings and reduction in carbon emissions (for different scenarios such as PV–diesel without storage, PV–diesel with storage, as compared to diesel-only situation), cost of PV–diesel–battery systems, COE of different hybrid systems, etc.  相似文献   

14.
There is a growing awareness that combustion fuels are a limited resource and burning of these fuels is the principal cause of air pollution, and possibly environmental warming. This recognition is elevating interest and activity toward the development and application of alternative/renewable sources of energy, such as solar energy to displace some of the use of fossil fuels. In this context, Saudi Arabia being enriched with fairly high degree of solar radiation, is a suitable candidate for deployment of solar photo-voltaic (PV) panels for power generation in crisis. Literature shows that residential buildings in Saudi Arabia consume about 47% of the total electric energy generated/consumed. In the present study, hourly mean solar radiation data for the period 1986–1993 recorded at the solar radiation and meteorological monitoring station, Dhahran (26° 32’ N, 50°13’ E), Saudi Arabia, have been analyzed to examine/investigate the potential of utilizing hybrid (PV + diesel) power systems to meet the load requirements of a typical residential building (with annual electrical energy demand of 35 200 kWh). The monthly average daily values of solar global irradiation for Dhahran range from 3.61 kwh/m2 to 7.96 kwh/m2. The hybrid systems considered in the present analysis consist of different combinations of PV panels/modules (different array sizes) supplemented with battery storage unit and diesel back-up. The study shows that with 225 m2 PV together with 12 h of battery storage, the diesel back-up system has to provide 9% of the load demand. However, in absence of battery bank, about 58% of the load needs to be provided by the diesel system.  相似文献   

15.
A technico-economic analysis based on integrated modeling, simulation, and optimization approach is used in this study to design an off grid hybrid solar PV/Fuel Cell power system. The main objective is to optimize the design and develop dispatch control strategies of the standalone hybrid renewable power system to meet the desired electric load of a residential community located in a desert region. The effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. The goal of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems. Simulation, modeling, optimization and dispatch control strategies were used in this study to determine the performance and the cost of the proposed hybrid renewable power system. The simulation results show that the distributed power generation using solar PV and Fuel Cell energy systems integrated with an electrolyzer for hydrogen production and using cycle charging dispatch control strategy (the fuel cell will operate to meet the AC primary load and the surplus of electrical power is used to run the electrolyzer) offers the best performance. The hybrid power system was designed to meet the energy demand of 4500 kWh/day of the residential community (150 houses). The total power production from the distributed hybrid energy system was 52% from the solar PV, and 48% from the fuel cell. From the total electricity generated from the photovoltaic hydrogen fuel cell hybrid system, 80.70% is used to meet all the AC load of the residential community with negligible unmet AC primary load (0.08%), 14.08% is the input DC power for the electrolyzer for hydrogen production, 3.30% are the losses in the DC/AC inverter, and 1.84% is the excess power (dumped energy). The proposed off-grid hybrid renewable power system has 40.2% renewable fraction, is economically viable with a levelized cost of energy of 145 $/MWh and is environmentally friendly (zero carbon dioxide emissions during the electricity generation from the solar PV and Fuel Cell hybrid power system).  相似文献   

16.
The development of photovoltaic solar energy (PV) has accelerated in the past decade. On the one hand, the improvements in solar cell types are very promising, while, on the other hand, the market for autonomous (off-grid) applications has grown substantially.

The development of grid-connected PV systems especially in the built-up environment is just starting up, both worldwide and in Europe. The energy losses currently present at system level will be reduced in the following years by implementing and assimilating practical experiments and demonstration projects.

Developments in Europe and some other countries will be described briefly. The interest in PV system developments is increasing and focussing more and more on the electricity utility sector.

It is clear that the utility sector will play an important role in the upscaling of the market for PV in energy supply. It is necessary, therefore, that the utility sector develops a long-term view, with a horizon of at least 25 years, on the role of PV in the energy supply.  相似文献   

17.
This article presents solar energy or specifically the solar photovoltaic (PV) development outlook in Malaysia. The paper first introduces the massive potential of solar energy in the country, the key players in the solar energy development and the early solar energy policies, and programmes in the country. The most important to the PV development is the Malaysia Building Integrated Photovoltaic initiative, which is presented in this paper followed by an explanation on the Feed-in Tariff recently introduced in the country to encourage new solar PV projects. The outlook for solar PV in Malaysia is optimistic and as the uptake of solar PV increases, the unit cost is coming down rapidly. Solar PV is expected to be the most competitive Renewable Energy (RE) source, with the potential to achieve grid parity for electrical power in the country in the near future, and surpassing all other REs combined by 2050.  相似文献   

18.
The concentrating photovoltaic (CPV) systems are a promising technology to obtain clean energy. However, these systems are not equally convenient worldwide due to different climatic conditions. The main aim of this paper is to analyze energy and economic performances of a point-focus CPV system for a residential user when its installation site varies. Three locations, Riyadh, Copenhagen, and Palermo, characterized by very different weather conditions are chosen. A model that links the electrical power of a triple-junction (TJ) cell with its temperature and concentrated radiation incident on it is experimentally developed to evaluate the energy performance of the CPV system. A comparison of the three localities for typical winter and summer sunny days indicates that the higher values of the TJ cell temperature are reached in summer, over 70°C at Riyadh, and its electrical power is reduced compared to a winter day. In winter, a TJ cell in Riyadh supplies an electric power of about 20% higher than that in other two cities, while in summer, the maximum power is observed at Copenhagen. On the contrary, the electrical producibility also depends on the sunlight daily hours number during the year. Hence, considering the real distribution of direct normal irradiance (DNI) and the environmental temperature for each locality, a CPV system composed of modules of 90 cells adopted for a residential user is sized. The electric producibility of the CPV system, by varying its module number, is evaluated for different localities together with the optimal number of the modules which is able to maximize the investment profitability.  相似文献   

19.
In this paper, a probabilistic model is developed to assess the effects of different support mechanisms on the financial return of small-scale hydroelectric, wind energy and solar PV systems. Besides, the results from this model are used to compare the economic effectiveness of each mechanism in increasing the profitability of these projects. We focus on three renewable energy support mechanisms: governmental grants, feed in tariffs (FiT) and renewable energy certificates (RECs). We also consider the effect of the carbon credits on the net present value of renewable projects and compare it with the other support mechanisms. The simulation results demonstrate that the feed in tariffs is the best mechanism to increase the profitability of solar PV systems and wind energy projects. Conversely, green certificate mechanism favors the most competitive technology as the hydropower. In addition, it is shown that the governmental grants and carbon credits are secondary support mechanisms compared to FiT and RECs. And, the carbon credits play a more important role than governmental grants as the energy output of the system increase. Finally, it can be concluded that the efficiency of the support mechanisms varies depending on stage of development of the renewable technologies that are implemented.  相似文献   

20.
The world is experiencing unprecedented development in the clean energy sector in residential and industrial applications. This paper provides a case study assessing different scenarios of greenizing the electrical energy demand in El-Mostakbal city in Egypt. Three scenarios are studied with consideration of a photovoltaic (PV) system integrated with the grid-connected city with different integrated system configurations. The scenarios for the grid-connected city are scenario-I: only PV, scenario-II: PV with batteries for electricity storage along with grid electricity, and scenario-III: PV with hydrogen production, storage, and utilization for covering the electric demand along with grid electricity, these scenarios are assessed technoeconomically, and the results show an optimized case where the electricity demand of the city can be met with 64.3% produced from solar energy, at $71.7 M of the net present cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号