共查询到20条相似文献,搜索用时 15 毫秒
1.
Amit Soni Alpa Dashora Vikas Gupta C. M. Arora M. Rérat B. L. Ahuja Ravindra Pandey 《Journal of Electronic Materials》2011,40(11):2197-2208
We present dielectric-function-related optical properties such as absorption coefficient, refractive index, and reflectivity of the semiconducting chalcopyrites CuGaSe2 and CuInSe2. The optical properties were calculated in the framework of density functional theory (DFT) using linear combination of atomic orbitals (LCAO) and full-potential linearized augmented plane wave (FP-LAPW) methods. The calculated spectral dependence of complex dielectric functions is interpreted in terms of interband transitions within energy bands of both chalcopyrites; for example, the lowest energy peak in the e2 (w) varepsilon_{2} (omega ) spectra for CuGaSe2 corresponds to interband transitions from Ga/Se-4p → Ga-4s while that for CuInSe2 emerges as due to transition between Se-4p → In-5s bands. The calculated dielectric constant, e1 (0) varepsilon_{1} (0) , for CuInSe2 is higher than that of CuGaSe2. The electronic structure of both compounds is reasonably interpreted by the LCAO (DFT) method. The optical properties computed using the FP-LAPW model (with scissor correction) are close to the spectroscopic ellipsometry data available in the literature. 相似文献
2.
Chunchun Li Huaicheng Xiang Changzhi Yin Ying Tang Yuncui Li Liang Fang 《Journal of Electronic Materials》2018,47(11):6383-6389
Li2Mg2TiO5, a rock-salt structured ceramic fabricated by a solid-state sintering technique, was characterized at the microwave frequency band. As a result, a microwave dielectric permittivity (εr) of 13.4, a quality factor of 95,000 GHz (at 11.3 GHz), and a temperature coefficient of resonance frequency (τf) of ? 32.5 ppm/°C have been obtained at 1320°C. Li2Mg2TiO5 ceramics have low permittivity, a broad processing temperature region, and a low loss, making them potential applications in millimeter-wave devices. Furthermore, B2O3 addition efficiently lowered the sintering temperature of Li2Mg2TiO5 to 900°C, which opens up their possible applications in low-temperature co-fired ceramics (LTCC) technology. 相似文献
3.
Spectra of complete sets of optical functions for α-and β-In2Se3 in the range of 0–20 eV were calculated using experimental reflection spectra and the Kramers-Kronig relation. Special features in the spectra of optical functions for both In2Se3 phases were analyzed. The spectra of both permittivity and characteristic electron energy losses were decomposed into elementary transverse and longitudinal components using the combined Argand diagrams. The main parameters of the electron transitions for these components were determined. The structure of the components was compared with the structure of the expected spectrum of interband transitions. 相似文献
4.
I. V. Bodnar 《Semiconductors》2016,50(6):715-718
In2Se3 films are produced by ion-beam evaporation at substrate temperatures of 313 and 623 K. As the target, In2Se3 single crystals grown by the vertical Bridgman method are used. The composition and structure of the crystals and films are determined by the X-ray spectral analysis and X-ray diffraction techniques, respectively. It is established that the crystals and films crystallize with the formation of a hexagonal structure. The band gap and refractive index of the In2Se3 films are determined from the transmittance and reflectance spectra. It is found that, as the substrate temperature is increased, the band gap increases. 相似文献
5.
Avula Edukondalu T. Sripathi Shaik Kareem Ahmmad Syed Rahman K. Sivakumar 《Journal of Electronic Materials》2017,46(2):808-816
Glass with compositions xK2O-(30 ? x)Li2O-10WO3-60B2O3 for 0 ≤ x ≤ 30 mol.% have been prepared using the normal melt quenching technique. The optical reflection and absorption spectra were recorded at room temperature in the wavelength range 300–800 nm. From the absorption edge studies, the values of the optical band gap (E opt) and Urbach energy (ΔE) have been evaluated. The values of E opt and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple Di-Domenico model. 相似文献
6.
The characteristics of the Lu2O3 oxide and their variations controlled by compositional defects are studied. The defects are anion vacancies produced on partial reduction of the oxide. Such defects exhibit features typical of quantum objects and have a profound effect on the optical transmittance spectrum, the character of conduction (insulator or semiconductor properties) and the order of magnitude of the permittivity ɛ (capable of varying from 11.2 to 125). The structural features of vacancies in the oxides are considered, and the effect of vacancies on the polarization, conductivity, and lattice vibrations is studied. The studies are carried out in the temperature range 200–900 K, the wavelength range 0.03–50 μm, and the current frequency range 102–105 Hz. The rare-earth metal oxides attract interest for applications in microelectronics due to their high permittivity (several times higher than the permittivity of SiO2) and, hence, the prospects for use of these oxides instead of SiO2. 相似文献
7.
The magnetic susceptibility of Czochralski-grown single crystals of Bi2Te3-Sb2Te3 alloys containing 0, 10, 25, 40, 50, 60, 65, 70, 80, 90, 99.5, or 100 mol % Sb2Te3 has been investigated. The magnetic susceptibility of these crystals was determined at the temperature T = 291 K and the magnetic field H oriented parallel (χ‖) and perpendicularly (χ⊥) to the trigonal crystallographic axis C 3. A complicated concentration dependence of the anisotropy of magnetic susceptibility χ‖/χ⊥ has been revealed. The crystals with the free carrier concentration p ≈ 5 × 1019 cm?3 do not exhibit anisotropy of magnetic susceptibility. The transition to the isotropic magnetic state occurs for the compositions characterized by a significantly increased (from 200 to 300 meV) optical bandgap. 相似文献
8.
Jan D. König M. Winkler S. Buller W. Bensch U. Schürmann L. Kienle H. Böttner 《Journal of Electronic Materials》2011,40(5):1266-1270
In this work, Bi2Te3-Sb2Te3 superlattices were prepared by the nanoalloying approach. Very thin layers of Bi, Sb, and Te were deposited on cold substrates,
rebuilding the crystal structure of V2VI3 compounds. Nanoalloyed super- lattices consisting of alternating Bi2Te3 and Sb2Te3 layers were grown with a thickness of 9 nm for the individual layers. The as-grown layers were annealed under different conditions
to optimize the thermoelectric parameters. The obtained layers were investigated in their as-grown and annealed states using
x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) spectroscopy, transmission electron
microscopy (TEM), and electrical measurements. A lower limit of the elemental layer thickness was found to have c-orientation. Pure nanoalloyed Sb2Te3 layers were p-type as expected; however, it was impossible to synthesize p-type Bi2Te3 layers. Hence the Bi2Te3-Sb2Te3 superlattices consisting of alternating n- and p-type layers showed poor thermoelectric properties. 相似文献
9.
Ping-Feng Yang Sheng-Rui Jian Yi-Shao Lai Rong-Sheng Chen 《Journal of Electronic Materials》2009,38(6):810-814
Nanotribological characteristics, including the coefficient of friction, wear coefficient, and wear resistance, of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds developed by the annealing of Sn–Cu or Sn–Ni diffusion couples were investigated in this work. The
scratch test conditions combined a constant normal load of 10 mN, 20 mN, or 30 mN and a scratch rate of 0.1 μm/s, 1 μm/s, or 10 μm/s. Experimental results indicated that, as the normal load increases, the pile-up grows taller and the scratch deepens,
leading to a greater coefficient of friction and wear coefficient, and reduced wear resistance. Moreover, the scratch rate
does not have a significant effect on the nanotribological characteristics except for those of Cu6Sn5 and Cu3Sn under a normal load of 10 mN. Though the hardness of Cu6Sn5, Cu3Sn, and Ni3Sn4 is similar, Ni3Sn4 appears to be more prone to wear damage. 相似文献
10.
The electronic structure and optical properties of In4Sn3O12 and In4Ge3O12 are studied by the projector-augmented-wave method based on the density-functional theory within the generalized gradient approximation. The cation ordering of the two compounds is explored by means of first-principles calculations. It is found that the valence-band maximum of the materials is determined by the d states of metal elements and O-2p states; the conduction-band minimum is occupied by an admixture of the O-2p states, In-5s states, and Sn-5s or Ge-4s states, respectively. The two compounds are direct-bandgap semiconductors. The low intensity of the absorption coefficient, reflectivity, and loss function shows that they are good transparent conducting oxides. 相似文献
11.
Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a corrosion product diffuses to the environment including the salt was suggested in Bi0.5Sb1.5Te3. However, the amount of dissolved corrosion product was very low, and the chemical stability of the corrosion product was not changed or improved by element substitution. 相似文献
12.
N. Samardzic B. Bajac V. V. Srdic G. M. Stojanovic 《Journal of Electronic Materials》2017,46(10):5492-5496
Memristive devices and materials are extensively studied as they offer diverse properties and applications in digital, analog and bio-inspired circuits. In this paper, we present an important class of memristors, multiferroic memristors, which are composed of multiferroic multilayer BaTiO3/NiFe2O4/BaTiO3 thin films, fabricated by a spin-coating deposition technique on platinized Si wafers. This cost-effective device shows symmetric and reproducible current–voltage characteristics for the actuating voltage amplitude of ±10 V. The origin of the conduction mechanism was investigated by measuring the electrical response in different voltage and temperature conditions. The results indicate the existence of two mechanisms: thermionic emission and Fowler–Nordheim tunnelling, which alternate with actuating voltage amplitude and operating temperature. 相似文献
13.
A thermopile sensor was processed on a glass substrate by electrodeposition of n-type bismuth telluride (Bi-Te) and p-type antimony telluride (Sb-Te) films. The n-type Bi-Te film electrodeposited at −50 mV in a 50 mM electrolyte with a Bi/(Bi + Te) mole ratio of 0.5 exhibited a Seebeck
coefficient of −51.6 μV/K and a power factor of 7.1 × 10−4 W/K2 · m. The p-type Sb-Te film electroplated at 20 mV in a 70 mM solution with an Sb/(Sb + Te) mole ratio of 0.9 exhibited a Seebeck coefficient
of 52.1 μV/K and a power factor of 1.7 × 10−4 W/K2 · m. A thermopile sensor composed of 196 pairs of the p-type Sb-Te and the n-type Bi-Te thin-film legs exhibited sensitivity of 7.3 mV/K. 相似文献
14.
Jiong Yang L. Xi W. Zhang L. D. Chen Jihui Yang 《Journal of Electronic Materials》2009,38(7):1397-1401
We present an investigation of electronic structures and electrical transport properties of some filled CoSb3 skutterudites by combining ab initio projected augmented plane-wave calculations and Boltzmann transport theory with electron group velocity evaluated by the
momentum matrix method. The systems are studied in a 2 × 2 × 2 supercell of Co4Sb12 to reveal the effects induced by different filler atoms and their filling fractions. The temperature dependences of the Seebeck
coefficient and power factor are studied, and they are in good agreement with experimental data. Our results reveal an optimal
filling fraction for n-type filled CoSb3 skutterudites and related compounds for achieving the highest power factor values. 相似文献
15.
Shiwei Feng Jun Hu Yicheng Lu Boris V. Yakshinskiy James D. Wynn Chuni Ghosh 《Journal of Electronic Materials》2003,32(9):932-934
The Zn3As2 and Zn3P2 were used as Zn-diffusion sources to form a p-region in undoped-InP wafers. The p-type InP formed by Zn diffusion from a
Zn3P2 source has higher transmittance over the testing-spectrum range 1,000–1,700 nm versus Zn diffusion from a Zn3As2 source. In the case of a p-type region formed from a Zn3As2 source, x-ray photoelectron spectroscopy (XPS) showed As atoms were reduced from the oxide state and formed an InAs composition,
which introduces more absorption loss. 相似文献
16.
Chang-eun Kim Ken Kurosaki Manabu Ishimaru Hiroaki Muta Shinsuke Yamanaka 《Journal of Electronic Materials》2011,40(5):999-1004
Our group has focused attention on Ga2Te3 as a natural nanostructured thermoelectric material. Ga2Te3 has basically a zincblende structure, but one-third of the Ga sites are structural vacancies due to the valence mismatch
between Ga and Te. It has been confirmed that (1) vacancies in Ga2Te3 exist as two-dimensional (2D) vacancy planes, and (2) Ga2Te3 exhibits an unexpectedly low thermal conductivity (κ), most likely due to highly effective phonon scattering by the 2D vacancy planes. However, the effect of the size and periodicity
of the 2D vacancy planes on κ has been unclear. In addition, it has also been unclear whether only the 2D vacancy planes reduce κ or if point-type vacancies can also reduce κ. In the present study, we tried to prepare Ga2Te3 and Ga2Se3 with various vacancy distributions by controlling annealing conditions. The atomic structures of the samples were characterized
by means of transmission electron microscopy, and κ was evaluated from the thermal diffusivity measured by the laser flash method. The effects of vacancy distributions on κ of Ga2Te3 and Ga2Se3 are discussed. 相似文献
17.
S. Benlamari M. Boukhtouta L. Taïri H. Meradji L. Amirouche S. Ghemid 《Journal of Electronic Materials》2018,47(3):1904-1915
Structural, electronic, optical, and thermal properties of ternary II–IV–V2 (BeSiSb2 and MgSiSb2) chalcopyrite semiconductors have been calculated using the full-potential linearized augmented plane wave scheme?in the generalized gradient approximation. The optimized equilibrium structural parameters (a, c, and u) are in good agreement with theoretical results obtained using other methods. The band structure and density of states reveal that BeSiSb2 has an indirect (Γ–Z) bandgap of about 0.61 eV, whereas MgSiSb2 has a direct (Γ–Γ) bandgap of 0.80 eV. The dielectric function, refractive index, and extinction coefficient were calculated to investigate the optical properties, revealing that BeSiSb2 and MgSiSb2 present very weak birefringence. The temperature dependence of the volume, bulk modulus, Debye temperature, and heat capacities (C v and C p) was predicted using the quasiharmonic Debye model at different pressures. Significant differences in properties are observed at high pressure and high temperature. We predict that, at 300 K and 0 GPa, the heat capacity at constant volume C v, heat capacity at constant pressure C P, Debye temperature θ D, and Grüneisen parameter γ will be about 94.91 J/mol K, 98.52 J/mol K, 301.30 K, and 2.11 for BeSiSb2 and about 96.08 J/mol K, 100.47 J/mol K, 261.38 K, and 2.20 for MgSiSb2, respectively. 相似文献
18.
The poorly known AgCd2GaS4 single-crystal compounds that crystallize in a rhombic structure (space group Pmn21) are studied. Deviations from the stoichiometric composition of the samples and random occupation of the cation sublattice sites by Ag and Ga ions result in violation of long-range order in the atomic arrangement and make the AgCd2GaS4 compounds structurally closer to disordered systems. In this case, it is found that the fundamental optical-absorption edge is smeared and shifted to longer wavelengths, and is adequately described by the Urbach rule. In addition, a broadening of the spectral peaks of photoconductivity and luminescence is observed. The concentration of charged point defects responsible for the smearing of the absorption edge is calculated. It is found to be 1.2×1020 cm?3. The AgCd2GaS4 single crystals are photosensitive semiconductors. From the position of the absorption edge, the optical band gap of the compound is estimated (E g0 = 2.28 eV at T = 297 K). The photoluminescence spectra of the AgCd2GaS4 single crystals are similar to the spectra of defect-containing CdS single crystals; for the AgCd2GaS4 crystals, the emission peaks are shifted to longer wavelengths with respect to the peaks for CdS crystals by Δλ = 0.06?0.1 μm. From the analysis of the experimental data, some conclusions on the nature of photoactive centers in AgCd2GaS4 compounds are drawn. 相似文献
19.
D. G. Ebling A. Jacquot H. Böttner L. Kirste J. Schmidt M. Aguirre 《Journal of Electronic Materials》2009,38(7):1450-1455
Thermoelectric compounds based on doped bismuth telluride and its alloys have recently attracted increasing interest. Due
to their structural features they show increased values of the thermoelectric figure of merit (ZT). A promising approach to improve the thermoelectric properties is to manufacture nanocomposite materials exhibiting lower
thermal conductivities and higher ZT. The ZT value of compounds can be shifted reasonably to higher values (>1) by alloying with IV-Te materials and adequate preparation
methods to form stable nanocomposites. The influence of PbTe and Sn on the thermoelectric properties is studied as a function
of concentration and preparation methods. Melt spinning and spark plasma sintering were applied to form nanocomposite materials
that were mechanically and thermodynamically stable for applications in thermoelectric devices. The structural properties
are discussed based on analysis by transmission electron microscopy and x-ray diffraction. 相似文献
20.
S. Y. Wang W. J. Xie H. Li X. F. Tang Q. J. Zhang 《Journal of Electronic Materials》2011,40(5):1150-1157
A series of Bi2(Se0.4Te0.6)3 compounds were synthesized by a rapid route of melt spinning (MS) combined with a subsequent spark plasma sintering (SPS)
process. Measurements of the Seebeck coefficient, electrical conductivity, and thermal conductivity were performed over the
temperature range from 300 K to 520 K. The measurement results showed that the cooling rate of melt spinning had a significant
impact on the transport properties of electrons and phonons, effectively enhancing the thermoelectric properties of the compounds.
The maximum ZT value reached 0.93 at 460 K for the sample prepared with the highest cooling rate, and infrared spectrum measurement results
showed that the compound with lower tellurium content, Bi2(Se0.4Te0.6)3, possesses a larger optical forbidden gap (E
g) compared with the traditional n-type zone-melted material with formula Bi2(Se0.07Te0.93)3. Our work provides a new approach to develop low-tellurium-bearing Bi2Te3-based compounds with good thermoelectric performance. 相似文献