首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a new chip control method with guide grooves formed on the rake face to realize continuous chip disposal and chip-pulling turning. Chips are conventionally broken using chip breakers during turning operations for disposal. However, chips of highly ductile materials or thin chips generated in finishing can not be broken easily. In order to prevent the chips from jamming up, the authors propose to continuously guide the chips away from the cutting point. Special tool tips were developed and tested for guiding the chip. Chip controllability and mechanics of the chip-guided cutting are discussed in the present research.  相似文献   

2.
This paper presents an analytical model to monitor the gradual wear of cutting tools, on-line, during turning operations using ultrasound waves. Ultrasound waves at a frequency of 10 MHz were pulsed continuously inside several cutting tools, towards their cutting edge. The change in tool geometry, due to gradual wear, has been related, in a mathematical form, to the change in the acoustic behavior of ultrasound waves inside the body of the cutting tools. Physical laws governing the propagation and reflection of ultrasound waves along with geometrical analysis of the wear area were used in deriving the mathematical model. The experimental setup and model evaluation is based on a previously published research work by the author, which presented an empirical model showing a corresponding change in the ultrasound behavior with tool gradual wear. The current work emphasizes the previous findings and presents the relation between the acoustic behavior of ultrasound waves and the progressive tool gradual wear in a mathematical form that can be easily used in machine control operations.  相似文献   

3.
A method is described for calculating the optimum cutting conditions in turning for objective criteria such as minimum cost or maximum production rate. The method uses a variable flow stress machining theory to predict cutting forces, stresses, etc. which are then used to check process constraints such as machine power, tool plastic deformation and built-up edge formation. A modified form of Taylor tool life equation where the constants are determined using the machining theory has been employed in predicting tool life for the optimisation procedure. The obtained results indicate that the described method is capable of selecting the appropriate cutting conditions.  相似文献   

4.
In this paper, an analytical approach is used to model the thermomechanical process of chip formation in a turning operation. In order to study the effects of the cutting edge geometry, it is important to analyse its global and local effects such as the chip flow direction, the cutting forces and the temperature distribution at the rake face. To take into account the real cutting edge geometry, the engaged part in cutting of the rounded nose is decomposed into a set of cutting edge elements. Thus each elementary chip produced by a straight cutting edge element, is obtained from an oblique cutting process. The fact that the local chip flow is imposed by the global chip movement is accounted for by considering appropriate interactions between adjacent chip elements. Consequently, a modified version of the oblique cutting model of Moufki et al. [Int. J. Mech. Sci. 42 (2000) 1205; Int. J. Mach. Tools Manufact. 44 (9) (2004) 971] is developed and applied to each cutting edge element in order to obtain the cutting forces and the temperature distributions along the rake face. The material characteristics such as strain rate sensitivity, strain hardening and thermal softening, the thermomechanical coupling and the inertia effects are taken into account in the modelling. The model can be used to predict the cutting forces, the global chip flow direction, the surface contact between chip and tool and the temperature distribution at the rake face which affects strongly the tool wear. Part II of this work consists in a parametric study where the effects of cutting conditions, cutting edge geometry, and friction at the tool–chip interface are investigated. The tendencies predicted by the model are also compared qualitatively with the experimental trends founded in the literature.  相似文献   

5.
In Part I of this work, Molinari and Moufki [Int. J. Mach. Tools Manufact., this issue], an analytical model of three-dimensional cutting is developed for turning processes. To analyse the influences of cutting edge geometry on the chip formation process, global effects such as the chip flow direction and the cutting forces, and local effects such as the temperature distribution and the surface contact at the rake face have been investigated. In order to accede to local parameters, the engaged part in cutting of the rounded nose is decomposed into a set of cutting edge elements. Thus each elementary chip, produced by a straight cutting edge element, is obtained from an oblique cutting process defined by the corresponding undeformed chip section and the local cutting angles. The present approach takes into account the fact that for each cutting edge element the local chip flow is imposed by the global chip movement. The material characteristics such as strain rate sensitivity, strain hardening and thermal softening, the thermomechanical coupling and the inertia effects are considered in the modelling. A detailed parametric study is provided in this paper in order to analyse the effects of cutting speed, depth of cut, feed, nose radius and cutting angles on cutting forces, global chip flow direction and temperature distribution at the rake face. The influence of friction at the tool–chip interface is also discussed.  相似文献   

6.
An optimization analysis, strategy and CAM software for the selection of economic cutting conditions in single pass turning operations are presented using a deterministic approach. The optimization is based on criteria typified by the maximum production rate and includes a host of practical constraints. It is shown that the deterministic optimization approach involving mathematical analyses of constrained economic trends and graphical representation on the feed-speed domain provides a clearly defined strategy that not only provides a unique global optimum solution, but also the software that is suitable for on-line CAM applications. A numerical study has verified the developed optimization strategies and software and has shown the economic benefits of using optimization.  相似文献   

7.
Implementation of a process and structure model for turning operations   总被引:1,自引:1,他引:0  
The consideration of the dynamic interaction between the machine tool structure and the cutting process is a prerequisite for the simulative prediction and optimization of machining tasks. However, existing cutting force models are either dedicated to already examined manufacturing operations or require extensive measurements for the determination of cutting coefficients. In this context this paper outlines a modular, analytical cutting force model applicable to common turning processes. It takes into account the dynamic material behavior, nonlinear friction ratios on the rake face as well as heat transfer phenomena in the deformation zones. On the part of the machine tool structure a parametric model based on the Finite Element Method (FEM) is implemented. Both models are coupled for the simulation of process and structure interactions, whereas the influence of the control system is considered as well. The simulation results were verified experimentally on a turning center.  相似文献   

8.
This paper presents a model for chip flow prediction during tube-end machining process using self-propelled rotary tools. The analysis performed is based on the transformation of the relative kinematic relationships in rotary cutting to that of the conventional cutting with large nose radius. Both relative and absolute chip flow angles are investigated. Tests were performed to measure the absolute chip flow angle, insert self propelled motion, and the deformed chip thickness during machining with self-propelled rotary tool under different cutting conditions. The predicted values of the absolute chip flow angle were in good agreement with that measured experimentally.  相似文献   

9.
A model of three-dimensional cutting is developed for predicting tool forces and the chip flow angle. The approach consists of coupling an orthogonal finite element cutting model with an analytical model of three-dimensional cutting. The finite element model is based on an Eulerian approach, which gives excellent agreement with measured tool forces and chip geometries. The analytical model was developed by Usui et al. [ASME J. Engng Indust. 100(1978) 222; 229], in which a minimum energy approach was used to determine the chip flow direction. The model developed by Usui required orthogonal cutting test data to determine the tool forces and chip flow angle. In this paper, a finite element model is used to supply the orthogonal cutting data for Usui's model. With this approach, a predictive model of three-dimensional cutting can be developed that does not require measured data as input. Cutting experiments are described in which good agreement was found between measured and predicted tool forces and chip flow angles for machining of AISI 1020 steel.  相似文献   

10.
11.
Due to the complexity of the machine tool structure and the cutting process, the dynamics of machining processes are still not completely understood. This is especially true due to the demand of high-speed machining to increase productivity. In order to model and control these complex processes, new approaches, which can represent complex phenomenon combined with learning ability, are needed. The combined neural–fuzzy approach appears to be ideally suited for this purpose. In this paper, the recently developed fuzzy adaptive network (FAN) is used to model surface roughness in turning operations. The FAN network has both the learning ability of neural network and linguistic representation of complex, not well-understood, vague phenomenon. Furthermore, it can continuously improve the initially obtained rough model based on the daily operating data. To illustrate this approach, a model representing the influences of machining parameters on surface roughness is established and then the model is verified by the use of the results of pilot experiments. Finally, a comparison with the results based on statistical regression is provided.  相似文献   

12.
A new material constitutive law is implemented in a 2D finite element model to analyse the chip formation and shear localisation when machining titanium alloys. The numerical simulations use a commercial finite element software (FORGE 2005®) able to solve complex thermo-mechanical problems. One of the main machining characteristics of titanium alloys is to produce segmented chips for a wide range of cutting speeds and feeds. The present study assumes that the chip segmentation is only induced by adiabatic shear banding, without material failure in the primary shear zone. The new developed model takes into account the influence of strain, strain rate and temperature on the flow stress and also introduces a strain softening effect. The tool chip friction is managed by a combined Coulomb–Tresca friction law. The influence of two different strain softening levels and machining parameters on the cutting forces and chip morphology has been studied. Chip morphology, cutting and feed forces predicted by numerical simulations are compared with experimental results.  相似文献   

13.
Unlike straight turning, the effective cutting conditions and tool geometry in contour turning operations are continuously changing with changing workpiece profile. This causes a wide variation in chip flow during the operation. Unfavorable chip flow can cause scratch/damage the machined surface, and lead to tool failure due to chip build up at the cutting edge. This paper presents a new methodology to predict the chip side-flow angle for complex grooved tool inserts in contour turning operations as well as experimental validation. Computer program has been developed to apply the predictive model to any contour workpiece profile and the capability of the predictive program is also presented in this paper.  相似文献   

14.
Understanding chip formation mechanisms in hard turning is an important area of research. In this study, experiments with varying cutting conditions and tool edge geometry were performed concurrently with finite element simulations. The aim was to investigate how the two mechanisms reported in literature namely—surface shear-cracking (SCH) and catastrophic thermoplastic instability (CTI) contribute to overall chip geometry and machining forces. By varying tool edge geometry and cutting conditions predominance of one over another is discussed. The calculation prescribed by Recht [Recht, R., 1964. Catastrophic thermoplastic shear. J. Appl. Mech. 31, 189–193] for representative cutting conditions resulted in a small critical cutting speed of 0.034 m/min indicating CTI was operative in the range of cutting conditions tested. FEM simulations were conducted on a subset of experimental conditions. Chip geometry and forces were compared between experiments and simulations. The experimental results indicated that SCH predominated in a majority of conditions. However, formation of saw-tooth chips in the FEM simulations established the occurrence of CTI also. Specifically, the edge radius did not alter chip geometry parameters. However, machining forces decreased with cutting speed and chip formation frequency increased linearly with cutting speed. A more negative rake angle also increased the chip pitch. The findings also indicate that only an intrinsic length scale governs saw-tooth chip formation in hard turning.  相似文献   

15.
This paper presents analytical predictions and experimental validation of a recently developed universal slip-line model for machining with restricted contact cut-away tools. Three important machining parameters, i.e. the cutting force ratio, chip thickness, and chip back-flow angle, are predicted on the basis of: (1) the universal slip-line model; (2) a maximum value principle for determining the state of stresses in the plastic region in restricted contact machining; (3) Dewhurst and Collins’ matrix technique for numerically solving slip-line problems; and (4) Powell’s algorithm for non-linear optimizations. All predictions are based on purely theoretical calculations with no experimental/empirical data as input. The extensive comparisons between theory and experiments show a reasonable agreement. Major new research findings from this study include: (1) the applicable ranges of an extreme friction slip-line model and of Johnson’s and Usui and Hoshi’s slip-line models; and (2) the general rule of the variation of tool–chip friction conditions. Tool–chip contact in machining with restricted contact cut-away tools is categorized into three broad cases. A theoretical method is also presented in the paper to distinguish different tool–chip contact cases in practical machining situations.  相似文献   

16.
In recent past, several neural network models which employ cutting forces and AErms or their derivatives for estimation as well as classification of flank wear have been developed. However, a significant variation in mean cutting forces and AErms at the start of cutting operation for similar new tools can result in estimation and classification error. In order to deal with this problem, a new on-line fuzzy neural network (FNN) model is presented in this paper. This model has four parts. The first part of the model is developed to classify tool wear by using fuzzy logic. The second part of this model is designed for normalizing the inputs for the next part. The third part consisting of modified least-square backpropagation neural network is built to estimate flank and crater wear. The development of forth part was done in order to adjust the results of the third part. Several basic and derived parameters including forces, AErms, skew and kurtosis of force bands, as well as the total energy of forces were employed as inputs in order to enhance the accuracy of tool wear prediction. The experimental results indicate that the proposed on-line FNN model has a high accuracy for estimating progressive flank and crater wear with small computational time.  相似文献   

17.
In order to realize the intelligent machine tool, an in-process monitoring and detection of cutting states is developed for CNC turning machine to check and improve the stability of the processes. The method developed utilizes the power spectrum density, or PSD of dynamic cutting force measured during cutting. Experimental results suggested that there are basically three types of patterns of PSD when the cutting states are the continuous chip formation, the broken chip formation, and the chatter. The broken chip formation is desired to realize safe and reliable machining.  相似文献   

18.
This paper presents results of the influence of cryogenic machining on the process stability. The stability diagrams are obtained experimentally using the coarse-grained entropy rate estimator for chatter detection from measured cutting forces. In comparison with conventional machining, enlarged stability windows are observed for the case of cryogenic machining. Based on the defined specific force models in turning operations, it is shown that a higher machining stability is achievable in cryogenic machining due to the reduction of specific cutting force components, in comparison with dry machining.  相似文献   

19.
The paper represents an experimental study of the burr formation mechanism in feed direction. The influence of tool angles and workpiece angles, as well as and other cutting conditions on burr dimensions is considered. The work contains experimental graphs of burr cross-sections obtained using a laser measurement system at various stages of burr formation. The analysis of the experimental work shows that, depending on the cutting conditions, a few mechanisms of burr formation can be discerned: sideward burr formation, bending of the uncut part of allowance, and the shearing of residuary material at the final stage. This study could be useful in the search for optimal tool geometry for burr minimization and for the modeling of a burr formation mechanism.  相似文献   

20.
Chatter is one of the main problems in machining resulting in poor surface quality and low productivity. Chatter can be avoided by applying stability diagrams which are generated using stability models. The stability analysis of turning has mostly been performed using single dimensional, so-called oriented transfer function approach whereas the actual turning processes usually involve multi-dimensional dynamics. In this paper, a comparative analysis between one dimensional (1D) and multi-dimensional stability models is given for turning operations. The multi dimensional model includes the inclination and side edge cutting angles and insert nose radius in order to demonstrate their effect on absolute stable depth of cut predictions. Chatter experiments are conducted in order to compare with both model predictions. It is demonstrated that for higher inclination angles and insert nose radii 1D models result in significant errors, and multi-dimensional solutions are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号